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Post-Quantum	Cryptography

• Once	a	quantum	computer	(QC)	will	be	available	for	the	daily	use,	it	will	break	RSA

• Quantum	supremacy	(defined	by	US	scientist	John	Preskill)	=	ability	of	QC	to	perform	computations	faster	than	

classical	computers.

• NIST	(US)	initiated	PQC	standardization	process	to	solicit,	evaluate	and	standardize	one	or	more	quantum-resistant	

public-key	cryptosystems:

• How	do	we	secure	our	internet	data	(stored,	transmitted	via	the	Internet)?	

• There	are	several	post-quantum	candidates	which	look	into	this	question:	

• Lattice-based cryptography

• Code-based	cryptography

• Symmetric	primitives

• Isogeny-based	cryptography

• Multi-variate	cryptography



Post-Quantum	Cryptography



Lattice-Based Cryptography

Motivation:	Efficiency

Popular	cryptosystems	are	relatively	inefficient;	

For	security	level	2" :	

RSA	-- key	length	#(%&),	computation	#(%().	
ECC	-- key	length	#(%),	computation	#(%)).	

Structured	(`Ring	based')	Lattices	-- key	length	and	computation	*(+)	asymptotically,	as	+ grows	towards	infinity.	

In	Practice,	for	typical	security	parameter	% ≈ 	100,	with	best	current	schemes,	typically	have:	

Structured	Lattice	crypto:	Computation ≈ 100	times	faster	than	RSA	

Structured	Lattice	crypto:	ciphertext/key	length	≈	RSA	key/ciphertext



Lattice-Based Cryptography

Definition:	An	% dimensional	(full-rank)	lattice 0(1) is	the	set	of	
all	integer	linear	combinations	of	some	basis set	of	linearly	

independent	vectors	23, … 2" ∈ ℝ":

0 1 ≔ :323 + :)2) + ⋯+ :"2": := ∈ ℤ, ? = 1, … , % .

Call	a	%×% matrix	1 = 23, … 2" a	basis	for	0(1).

Example:	in	2	dimensions,	i.e.	% = 2:

23 =
1
0 , 2) =

1.2
1

23C =
−0.6
2 , 2)C =

−0.3
3



Lattice-Based Cryptography

Definition:	For	an	%-dimensional	lattice	basis	1 = 23, … 2" ∈ ℝ"×",	the	
fundamental	parallelepiped	of	1,	denoted	G(1),	is	the	set	of	all	real-valued	
[0,1)-linear	combinations	of	some	basis	set	of	linearly	independent	

vectors	 23, … 2" ∈ ℝ":	

G 1 ≔ :323 + :)2) + ⋯+ :"2": 	0 ≤ := < 1, ? = 1, … , %

For	an	%-dimensional	lattice	0(1) the	determinant	of	0 1 is	the	%-dim.	

volume	of	the	G(1)

Example:	2-dim	1 = K 2
: L



Lattice-Based Cryptography

For	cryptographic	security,	need	computationally	hard	lattice	problems.	Many	problems	

related	to	geometry	of	lattices	seem	to	be	hard.

The	most	basic	geometric	quantity	about	a	lattice	is	its	minimum	(aka	Minkowski	first	

minimum).

Definition:	For	an	%-dim.	lattice	0 it’s	minimum	M(0) is	the	length	of	the	
shortest	non-zero	vector	of	0: M 0 = min( 2 ∶ 	 2 ∈ 0	 ∖ 0).

For	any	%-dim.	lattice	0 holds:	M 0 ≤ %� ⋅ det 0
X
Y.



Lattice-Based Cryptography

Lattice-based	problems.

Z −Shortest	Vector	Problem	(Z-SVP):		Given	a	basis	1 for	% −dim	lattice,	find	2 ∈ 0 such	that:
0 < 2 < [ ⋅ M(0).	

Small	Integer	Solution	Problem	\]\^,_,",`:	Given	% and	a	matrix	a sampled	uniformly	in	ℤ^"×_, find	b⃗ ∈
ℤ_ ∖ {0} such	that	a ⋅ b⃗ = 0	fgL	h	 and	 b⃗ ≤ i

Ajtai’s	Random	q-ary perp	Lattice:	Given	an	integer	h and	a	uniformly	random	matrix	a ∈ ℤ^"×_ ,	the	q-ary

perp	lattice	0^j a = {b⃗ ∈ ℤ_: a ⋅ b⃗ = 0	fgL	h}.

Search-LWE	Problem:	Given	h, %,f, k,	a	matrix	a ↩ m(ℤ^_×") and	n⃗ = a ⋅ o⃗ + p⃗	fgL	h (with	p⃗ ↩ qr^_
and	o⃗ ↩ m(ℤ^"),	find	o⃗ .	



Lattice-Based	RingCT



Lattice-Based RingCT	[ACISP’19]

List of pk

Ring-Sig

List of pk

Group-Sig

A	group	signature	scheme	allow	a	signer	(Alice)	as	a	

member	of	a	group	to	anonymously	sign	a	message	on	

behalf	of	the	group	with	s users.

A	group	manager	(GM)	is	in	charge	of	establishing	pairs	

of	(public	key,	secret	key)	=	(tu, ou).	

A	ring	signature	scheme	allow	a	signer	(Alice)	to	

anonymously	sign	a	message	on	behalf	of	the	group	

with	w	users.

No	GM	is	needed.	



Lattice-Based RingCT	[ACISP’19]

A ring signature has the following properties: 
• All the properties of a digital signature, 

• Anonymity: the identity of Alice cannot be determined, 

• Spontaneity: any ring of users can be used as a group,

• non-Linkability: given two messages and their signatures, no one can tell if the signatures were 
from the same signer or not, 

• non-Framebility: no set of users can forge a signature for a non-participating ring member. 

Example: 

Cryptocurrencies like Bytecoin (BCN) 2012, ShadowCoin, 

Monero 2016 (based on Liu’s PhD thesis and paper); Ring CT v 1.0 and v 2.0. 



Lattice-Based RingCT	[ACISP’19]

LRCT Scheme:

• BLISS (Bimodal Lattice Signature Scheme) 
• Post-quantum cryptography
• Five polynomial time algorithms 

Correctness is satisfied 

Version-1: Single-Input Single-Output (SISO) wallets.
(ACISP2018)

Version-2: Multiple-Input Multiple-Output (MIMO) wallets. 
(ACISP2019)



Lattice-Based RingCT	[ACISP’19]



Lattice-Based RingCT	[ACISP’19]



Lattice-Based RingCT	[ACISP’19]

MIMO. LRCT. Spend protocol



Lattice-Based RingCT	[ACISP’19]

Range	Proof



Lattice-Based	

Zero-Knowledge	Proofs



Lattice-Based Zero-Knowledge	Proofs

Background:	Schnorr Protocol ZKP	is	useful	tool	for	proving	something	about	a	secret	is	true	while	

minimizing	leakage	of	information on	the	secret ([GMR85]).	

ZKP	has	been	extensively	investigated	and	generalized	to	cover	almost	

any	imaginable	scenario!	For	instance,	how	to	prove	in	ZK	that:

• Anonymous	authentication:	I	know	a	secret	key	that	corresponds	to	
one	of	N	public	keys	of	a	group,	without	identifying	which	key.

• Anonymous	credentials:	I	know	a	signature	from	an	authority	on	my	

driver's	license	(containing	my	name,	address,	age,...)	but	I	just	want	

to	prove	to	an	alcohol	merchant	that	I	am	over	18,	without	leaking	

who	I	am.			

To	handle	such	general	situations,	need	to	generalize	definition	(and	

construction!)	of	ZK.



Lattice-Based Zero-Knowledge	Proofs

Generalizing	the	definition	of	ZK	to	any	relation	�:	

• Let	� = { b;s } ⊆ 	Ç×É	be	a	relation	(e.g.	�	 = 	 { b = Ñ, ℎ ;s = Ü : 	ℎ = Ñá} in	Schnorr).

• Let	b ∈ Ç	be	the	common	public	input	to	G and	Ç (e.g.	ℎ ∈	< Ñ > in	Schnorr).

• Let	s ∈ É	be	a	witness	private	input	to	G (e.g.	Ü such	that	ℎ = Ñá in	Schnorr).

• Let	0â be	language	corresponding	to	�, i.e.	set	of	b ∈ Ç for	which	there	exists	a	witness	

s ∈ É with	 b;s ∈ �. (e.g.	set	< Ñ > in	Schnorr)	

Goal:	For	a	given	relation	� and	b,	prove	in	ZK	that	I	know	a	witness	s such	that	 b;s ∈ �.	



Lattice-Based Zero-Knowledge	Proofs

General	definition	of	Zero-Knowledge	Proof	to	any	relation	�.

Completeness:	If	G and	Ç follow	protocol,	Ç's	test	will	always	pass.		

Soundness:	There	exists	an	efficient	(probabilistic	polynomial	time)	algorithm	(witness	extractor)	that	given	any	

malicious	prover	G∗	that	passes	with	non-negligible	probability	the	honest	verifier's	test	on	input	b,	can	extract	a	
witness	s such	that	 b;s ∈ �.

Zero-Knowledge:	The	exists	an	efficient	(expected	polynomial	time)	algorithm	(simulator)	that	given	any	malicious	

verifier	Ç∗,	can	simulate	protocol	messages	received	by	Ç∗	from	G on	input	b with	a	computationally	indistinguishable	

distribution.



Lattice-Based Zero-Knowledge	Proofs

Definition	(Commitment	Scheme):	The	formal	definition	of	a	commitment	scheme	is	given	as	follows.	A	

commitment	scheme	consists	of	the	following	three	algorithms:

ãpnåp%: is	a	probabilistic	polynomial-time	(PPT)	algorithm	that	outputs	a	commitment	key	:u and	a	

definition	of	message	space	ℳéè.
êgf: is	a	PPT	algorithm	that	on	input	the	commitment	key	:u and	a	message	ë ∈ ℳéèoutputs	values	ê, í,	

where	ê is	the	commitment	on	ë and	í ∈ ℛéè	is	the	corresponding	randomness	sampled	from	

randomness	space	ℛéè	.
#tp%: is	a	deterministic	algorithm	that	on	input	:u,	a	message	ë and	values	ê, í opens	the	commitment	to	

the	value	ë.

Homomorphic	commitment:	A	homomorphic	commitment	scheme	is	a	non-interactive	commitment	scheme	

such	that	the	following	property	holds:

êgféè K, íî + êgféè 2, íï = êgféè K + 2, íî + íï
ñ ⋅ êgféè K, íî = êgféè(ñK, ñíî)



Lattice-Based Zero-Knowledge	Proof	for	Integer	Relations	(Designs,	Codes	and	

Cryptography,	(to	appear))

Lattice-Based	Commitment

Definition	(Challenge	Space):	Let	ℛ^ = ℤ^[ó]/	(ó" + 1) for	h ∈ ℤö.	Let	õÉ(ú) denote	the	Hamming	weight	of	

the	elements	ú ∈ ù[ó]	and	t ≤ h/2 then	the	challenge	space ûℋ†,°
" 	is	defined	as	follows:

ûℋ†,°
" = ú ∈ ℤ ó : deg ú = % − 1 ∧ õÉ ú = § ∧	 ú • = t , 	K%L			Δûℋ†,°

" = ûℋ†,°
" − ûℋ†,°

"

If	the	M-LWE	problem	is	hard	then	

the	commitment	scheme	is	

computationally	hiding.	

If	M-SIS	problem	is	hard,	then	our	

commitments	scheme	is	

computationally	binding	with	respect	

to	the	relaxation	factor	d.



Lattice-Based Zero-Knowledge	Proof	for	Integer	Relations	

Constructions	

1. Integer	addition	ZK	protocol:	Prove	knowledge	of	ó, ß, ù ∈ ℤ such	that	ó + ß = ù ∈ ℤ

2. Polynomial	multiplication	ZK	protocol:	Prove	knowledge	of	polynomials	®,©, ™ ∈ ℛ^ such	that	® ⋅ © = ™.	

3. Integer	multiplication	ZK	protocol:	Prove	knowledge	of	integers	ó, ß, ù ∈ ℤ such	that	ó ⋅ ß = ù	

Techniques:
• One-shot	proof:		The	shortness	of	the	extracted	witness	is	one	of	the	main	challenges	in	lattice-based	zero-

knowledge	proofs	and	arguments	of	knowledge.

• Since	most	of	the	extraction	techniques	use	multiplication	by	the	inverse	of	challenge	differences,	this	can	

be	challenging	when	we	deal	with	lattice-based	proofs.

• Solution:	introduction	of	relaxed	arguments	of	knowledge.

• ->	solving	a	system	of	equations	of	the	form Ç ⋅ :⃗ = n⃗,	where	Ç is	a	Vandermonde	matrix,	and	the	entries	

of	this	matrix	are	the	different	powers	of	challenges.

• The	one-shot	proof	in	CRYPTO’19	uses	adjugate matrices	instead	of	Vandermonde.	à Use	a	challenge	

space	with	large	challenges



Lattice-Based Zero-Knowledge	Proof	for	Integer	Relations	

Techniques	(cont.):	
• For	integer	addition	protocol:	Motivated	by	[CRYPTO’18].	

• [CRYPTO’18]	provides	efficient	integer	relations	protocol	for	integers	of	length	0 ≤ 23&.
• However,	for	smaller	integers,	i.e.	0 ∈ [2´, 2¨] the	[CRYPTO’18]	approach	can	be	outperformed	by	our	

protocol.

• We	use	a	chunking	technique,	applying	on	integers	of	length	0 and	then	perform	the	classical	

addition/multiplication	algorithm	on	each	chunk.			

ß Integer	Addition	Protocol

Integer	Multiplication	Protocol

↓



Quantum	Random	Oracle	

Security	Proof



• Fujisaki-Okamoto	(FO)	transform	for	CPA	à CCA	security	

• Commonly	used	to	strengthen	CPA	à CCA	security	for	pub-key	encryption

• Start	from	a	CPA	secure	pub	key	encryption	scheme	Æ
• Get	a	CCA	secure	pub	key	enc scheme	Æ’	 = 	∞#(Æ)

• Used	by	most	NIST	PQC	pub-key	encryption	scheme	candidates

• We	focus	on	the	∞#⊬ = m⊬↺ ∘ ¥ (E)	variant		

• using	two	hash	functions	(õ, õ’),	modelled	as	Random	Oracles

• Focus	on	hash	õ	used	by	m:	
• :	 = 	Æ%:(f;õ’(f)),		encapsulated	key	ã	 = 	õ(f, :)

• Assume	two	(mild)	properties	on	the	CPA	pub-key	encryption	scheme:

• Det.	Scheme	¥(Æ)	is µ – injective for	sufficiently negligible µ
• CPA	scheme	E	has	sufficiently	negligible	decryption	failure	probability	∂

Quantum	Random	Oracle	Model	[EUROCRYPT’20]



• Security	proofs	in	the	Quantum	Random	Oracle	Model	(QROM)

• Model	hash	functions	used	in	FO	transform	as	random	oracles	(q	attack	queries)

• Quantum	accessible	random	oracle	#,	modelled	as	a	unitary	map	m#:
• m∑|Ü⟩|n⟩ ⟼ |Ü⟩|n	⨁#(Ü)�

� ⟩

• Model	QROM	quantum	attacker	º|∑⟩ as	a	sequence	of	attack	unitariesº=	interleaved	with	oracle	queries	to	
m#,	followed	by	a	final	measurement	Ω	to	produce	output:

• º|∑⟩ ∶= Ω	°	ºø°	m∑°	ºø¿3°	m∑	°	⋯	m∑°	º3
• º= outputs	i’th query	to	#	

• Prior	FO	QROM	Security	Proofs	(w/o	strong	“DS”	properties):	square	root	adv.	Loss

• ¡¬√(ƒƒ¡) ≤ ≈ ∆ ¡¬√(ƒ«¡)� (simplified)

• Our	result	(with	FFC/injectivity properties):	

¡¬√(ƒƒ¡) ≤ ≈» ∆ ¡¬√ ƒ«¡ 		(simplified)	(no	sq-root	adv loss)

Quantum	Random	Oracle	Model	[EUROCRYPT’20]



• Core	tool	in	QROM	CCA	proofs:	One-Way	to	Hiding	(OWTH)	Lemma	[U14]
• Recall	- FO	use	of	õ:	 Ü∗ ← $,			À	 = Æ%:°è(Ü∗),		encaps.	key	ã = õ(Ü∗, :)	
• Classical	ROM	argument:	 if	º(tu, :) can	distinguish	K	from	random,	º must	query	õ at	(Ü∗, :).

àproof	reduction	can	extract	Ü from	º’s	queries	to	õà break	one-wayness of	Enc.

• OWTH	[U14]:	QROM	variant	of	above

• Goal	of	º	: Distinguish	whether	# = õ or	# = å -- å differs	from	õ only	at	Ü∗
• Ü∗, nÃ, nÕ 	

← $				//	 õ Ü∗ := nÃ		,	å Ü∗ ≔ nÕ
• Adv–—“”(º):= |Pr	[1 ← º|Ã⟩ À∗ = Æ%: Ü∗ , nÃ, nÕ ] − Pr	[1 ← º|Õ⟩ À∗ = Æ%: Ü∗ , nÃ, nÕ ]|

• Goal	of	OWTH	extractor	algorithm	÷|*◊ÿ:	Given	À∗ = Æ%: Ü∗ ,	use	º to	efficiently	extract	Ü∗

• aLb∑Ÿ 1 := Pr Ü∗ ← 1|∑◊ÿ À∗ = Æ%: Ü∗ , nÃ , nÕ

• Original	B	strategy	[U14],	|#C⟩= |õ⟩ (“single	sided”):		query-based	extraction	àmeasure	a	random	

query	of	A

• [U14]	OWTH	bound:	aLb#É¥õ(º) 	≤ 	2h ∆ aLb#É(1)
�

-- square-root	loss!

• Subsequent	work	[AHU18],	[BH+19	- |*C⟩=|⁄⟩	€+¬	|‹⟩ (“double	sided”)]:	Improve	on	“random	query”,	but	still	

query-based	extraction

• [BH+19]	bound:	aLb∑Ÿ›Ã º ≤ 2 ⋅ aLb∑Ÿ(1)
�

-- square-root	loss	remains!

Background:	One-Way	To	Hiding	(OWTH)	Lemma



• Q:	Square-root	loss	in	query-based	extraction unavoidable?

• A:	[PQCrypto’19]	Impossibility	Result	-- Yes!

• Main	observation	of	[PQCrypto’19]– quantum	origin	of	square-root	loss:

• For	q=1	query	to	O,	there	exists a	quantum	distinguisher	A	with

• AdvOWTH(º)	=	 2	 ∆ AdvOW(B)
� ,	where	1	is	the	query-based	extractor	that	measures	º’s	query.

àImpossible	to	remove	OWTH	square-root	loss	with	a		query-based	extractor

• Our	observation:		But,	the	above	distinguisher	suggests	an	alternative	extraction	method	that	can	

circumvent	the	square-root	loss:		

• use	a	measurement-based	extractor
• Extract	knowledge	of	fi∗ from	A’s	measurement,		
• rather	than	only	from	A’s	queries!

Background:	One-Way	To	Hiding	(OWTH)	Lemma



• How	does	the	”square-root	advantage”	distinguisher	work?

• º makes	a	quantum	query	to	#:	
• ∑ tá◊��

á◊ |ÜC⟩ 0⟩ = tá∗� |Ü∗⟩ 0⟩ + ∑ tá◊��
á◊‡á∗ |ÜC⟩|0⟩ à AdvOW(B)=tá∗ (assume	<<1).				

• The	response	|·∑⟩	from	# is	either

• ⟼ |·Ã⟩:= tá∗� Ü∗⟩ nÃ⟩ + 1 − tá∗
� ∑

°‚◊
�

3¿°‚∗
�

�
á◊‡á∗ |ÜC⟩|õ(ÜC)⟩ if	* = ‹

• ⟼ |·Õ⟩:= tá∗� Ü∗⟩ nÕ⟩ + 1 − tá∗
� ∑

°‚◊
�

3¿°‚∗
�

�
á◊‡á∗ |ÜC⟩|õ(ÜC)⟩ if	* = ⁄

• To	distinguish	whether	|·∑⟩ is	|·Ã⟩ or	|·Õ⟩:
• º makes	a	projective	measurement	on	|·∑⟩:	Ω„	w.r.t.	a	measurement	vector |b⟩
• |b⟩ :=	vector	in	span(|·Ã⟩, |·Õ⟩)	at	an	angle	of	≈ ‰

´
from	|·Ã⟩

• Ω„	returns	1	with	prob.	t∑:= proj. of	|·∑⟩	along	|b⟩ )

Background:	One-Way	To	Hiding	(OWTH)	Lemma



• Summary	- our	measurement-based	extraction	idea (assume	1	oracle	query,	optimal	

distinguisher	º)		-- algorithm	C:

1. Run	º3
|Õ⟩(À∗ = Æ%: Ü∗ , nÃ, nÕ)	to	output	oracle	query			

2. Process	the	query	with	the	oracle	m|Õ⟩			//	state	à |·Õ⟩
3. Let	º perform	its	proj.	meas.	w.r.t.	|b⟩ //	state	à |b⟩ with	prob.	t& ≈ tígÍ„(|·Õ⟩) ) ≈ 3

)

4. Measure	the	input	reg.	and	ret.	result	 //	state	à|Ü∗⟩|∆⟩ with	prob.	t´ ≈ tígÍÎ(|b⟩) ) ≈ 3
)

Overall	extraction	success	probability	:=	aLb∑Ÿ ê = t& ∆ t´ ≈
3
´

Our	Idea:	Measurement-Based	Extraction



• Summary	- our	measurement-based	extraction	idea

• (assume	1	oracle	query,	optimal	distinguisher	º)		-- algorithm	C:

1. Run	º3
|Õ⟩(À∗ = Æ%: Ü∗ , nÃ, nÕ)	to	output	oracle	query			

2. Process	the	query	with	the	oracle	m|Õ⟩			//	state	à |·Õ⟩
3. Let	º perform	its	proj.	meas.	wrt |b⟩ //	state	à |b⟩ with	prob.	t& ≈ tígÍ„ |·Õ⟩ ) ≈ 3

)
3.1	Run	º) -- pre-meas.	unitary	 //	rotates	|b⟩ to	comp.	basis	st. |1⟩ ∶= º)|b⟩
3.2	Run	º’s	comp.	basis	out.	Meas.Ω //	state	à |1⟩	with	prob.	 tígÍ3 º)|·Õ⟩ ) 	≈ 3

)
.

3.3	Run	º)
¿3-- Rewind back	to	query					//	rotates	|1⟩ back	to	|b⟩ 	= º)

¿3|1⟩	
4. Measure the	input	reg.	and	ret.	result			//	state	à|Ü∗⟩|∆⟩ with	prob.	t´ ≈ tígÍÎ(|b⟩) ) ≈ 3

)

Overall	extraction	success	probability	:=	aLb∑Ÿ ê = t& ∆ t´ ≈
3
´

à “Measure-Rewind-Measure”	(MRM)	technique

Our	Idea:	Measurement-Based	Extraction



Our	Idea:	Measurement-Based	Extraction

• Comparison	with	prior	OWTH	results:

OWTH Lemma Adv(A) bound Secret	set	size	
|S|

Extractor oracles A’s	dist.
event

Orig. [U14] 2L aLb∑Ÿ
� Arbitrary |õ⟩ or |å⟩ Arbitrary

Semi-Class.		

[AHU18]

2 L	aLb∑Ÿ
� Arbitrary (|õ⟩\S or |å⟩\S)

and 1Ì
Arbitrary

Orig. Double-

Sided	[BH+19]

2 aLb∑Ÿ
� 1 |õ⟩ and |å⟩ Arbitrary

MRM 4L	aLb∑Ÿ Arbitrary |õ⟩ and |å⟩ 1ßA

d	:=	A’s	oracle	depth,		aLb∑Ÿ :=	extractor’s	success	probability,	

S	:=	set	on	which	G,	H		differ,	|õ⟩\S :=	restriction	of	|õ⟩ to	complement(S),	1Ì :=		indicator	function	of	S	
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