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Post-Quantum Cryptography

Development in
quantum
computing
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Post-Quantum Cryptography

* Once a quantum computer (QC) will be available for the daily use, it will break RSA

* Quantum supremacy (defined by US scientist John Preskill) = ability of QC to perform computations faster than
classical computers.

e NIST (US) initiated PQC standardization process to solicit, evaluate and standardize one or more quantum-resistant
public-key cryptosystems:

* How do we secure our internet data (stored, transmitted via the Internet)?

* There are several post-quantum candidates which look into this question:
* Lattice-based cryptography
* Code-based cryptography
* Symmetric primitives
* Isogeny-based cryptography
e Multi-variate cryptography
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Lattice-Based Cryptography

Motivation: Efficiency

Popular cryptosystems are relatively inefficient;
For security level 2™ :

RSA -- key length O (n3), computation 0 (n®).
ECC -- key length O (n), computation 0(n?).

Structured ('Ring based') Lattices -- key length and computation O(n) asymptotically, as n grows towards infinity.
In Practice, for typical security parameter n = 100, with best current schemes, typically have:

Structured Lattice crypto: Computation = 100 times faster than RSA
Structured Lattice crypto: ciphertext/key length = RSA key/ciphertext



Lattice-Based Cryptography

/Definition: An n dimensional (full-rank) lattice L(B) is the set of \

all integer linear combinations of some basis set of linearly
independent vectors by, ... b,, € R™:

L(B) = {cllgl + 021_52 + .-+ ann: ¢ €EZi=1,..,n}

\Call a nXn matrix B = (51, Bn) a basis for L(B).

)

Example: in 2 dimensions, i.e. n = 2:
ho=lg) =[]

=[50 B=[]




Lattice-Based Cryptography

. . \ X X X X X
Definition: For an n-dimensional lattice basis B = (bl, ...bn) € R™", the 1L.1) (2.1)
fundamental parallelepiped of B, denoted P(B), is the set of all real-valued X X ’ { X
[0,1)-linear combinations of some basis set of linearly independent
vectors (1_51, En) € R™ X e X X X
N P(B) := {c1by + caby + -+ Cpbp: 0 < ¢; < 1,i = 1,...,n} Y, L,

For an n-dimensional lattice L(B) the determinant of L(B) is the n-dim.
volume of the P(B)

Example: 2-dim B = lccl Z




Lattice-Based Cryptography

-

(&

For cryptographic security, need computationally hard lattice problems. Many problems
related to geometry of lattices seem to be hard.

The most basic geometric quantity about a lattice is its minimum (aka Minkowski first
minimum).

>

Definition: For an n-dim. lattice L it’s minimum A(L) is the length of the
shortest non-zero vector of L: A(L) = min(”B” : bEL \ 0).

1
S For any n-dim. lattice L holds: A(L) < +/n - det L=,




Lattice-Based Cryptography

Ajtai’s Random g-ary perp Lattice: Given an integer g and a uniformly random matrix A € ngm , the g-ary
perp lattice Lg(A) = (V€ Z™: A -V = 0 mod q}.

Lattice-based problems.

p-

N




Lattice-Based RingCT



Lattice-Based RingCT [ACISP’19]

A group signature scheme allow a signer (Alice) as a
member of a group to anonymously sign a message on
behalf of the group with w users.

A group manager (GM) is in charge of establishing pairs
of (public key, secret key) = (pk, sk).

00—
Pub-Key —‘s
O—r
Pr-Key OT’ 1 2
O0—3
O—=4

O Alice
W

List of pk

A ring signature scheme allow a signer (Alice) to
anonymously sign a message on behalf of the group
with w users.

No GM is needed.




Lattice-Based RingCT [ACISP’19]

A ring signature has the following properties:

« All the properties of a digital signature,

«  Anonymity: the identity of Alice cannot be determined,
« Spontaneity: any ring of users can be used as a group,

* non-Linkability: given two messages and their signatures, no one can tell if the signatures were
from the same signer or not,

* non-Framebility: no set of users can forge a signature for a non-participating ring member.
Example:

Cryptocurrencies like Bytecoin (BCN) 2012, ShadowCoin,
Monero 2016 (based on Liu’s PhD thesis and paper); Ring CT v 1.0 and v 2.0.



Lattice-Based RingCT [ACISP’19]

Accounts - Wallets

LRCT Scheme:

Public Private
 BLISS (Bimodal Lattice Signature Scheme) “act” “ask”
 Post-quantum cryptography User Public-Key Private-Key
» Five polynomial time algorithms Coin Coin Coin-key

Correctness is satisfied
Input Wallet (W) Output Wallet (OW)

Version-1: Single-Input Single-Output (SISO) wallets. - Public Private - Public Private

(AC I S P20 1 8) “act” “ask” “act” “ask”
Version-2: Multiple-Input Multiple-Output (MIMO) wallets. ] Al St SRR e Stout)
(ACISP2019) Coin en® ck® Coin cnd ck?

(in) (in) (out) (out)

SISO:k=1andj=1

Setup Creates the public parameters
MIMO:k > 1andj > 1
KeyGen Generates the public keys
Mint Produces the coins
Spend Transfers input wallets to output wallets

Verify Verifies transactions



Lattice-Based RingCT [ACISP’19]

Algorithm 1 MIMO.L2RS.KeyGen - Key-pair Generation (a, S)

Input: Pub-Param: A € ’Rix(m_l).
Output: (a,S), being the public-key and the private-key, respectively.
1: procedure MIMO.L2RS.KEYGEN(A)

2: Let ST = (s1,...,8m_1) € ’R;X(m_l), where s; «+ (—27,2")"  for1 <i<m—1
3: Compute a = (aj,a2)” = A -S mod ¢ ERg.
4: return (a, S).

' 1
m'1 O—T
Public Parameter Public Key
1
O—

Private



Lattice-Based RingCT [ACISP’19]

Algorithm 4 MIMO.LRCT.Mint

Input: (A € Rgx(m—l), $ € [0, 2£$_1]), being the public parameter A and the amount $.
Output: (cn,ck), where they are the coin and the coin key, respectively.
1: procedure MIMO.LRCT.MINT(A,$)
2:  Let ck” = (cki,...,ckm_1) € Re™“"™ Ywith ck; « (=27,27)", for 1 <i<m — 1
3: cn = Coma ($,ck) = A - ck + $ mod ¢ € R? with $ = (0,$)” € R*?
4: return (cn, ck)

Coin Key



Lattice-Based RingCT [ACISP’19]

MIMO. LRCT. Spend protocol

© ® N oo k0 Db~

Determines the amount $;,, to spend: N;,, of IW
Determines the Bob’s wallets N_,,; of OW, using Bob’s pk
Proves balance, ¥$;,, = }'$,,; = amount preservation
Verifies $,,,, — range preservation (PoKggnge)

Securely sends ck,,, and $,,, to Bob

Creates the List of the Ring Signature — adding N;,, of IW
Signs the transaction TX with (sk,ck) — SigGen (PoK)
Sets TX = {u, IW,0W}, Sig = {PoK, PoKgange}

Outputs TX, Sig and Linking Tags




Lattice-Based RingCT [ACISP’19]

Range Proof

Spend: en,,;-; = A -ck+5=Com,(5,ck)

P cn, =4 -ck+10 —}

(\2 Change: cn,,;_, = A - ck + 5 = Com,(5, ck)
Alce * Proves balance, ¥$;, = ¥$,,: = amount preservation

cn;, - (cnout—l + cnout—z) = ComA(Or Ck) i@

Bob
Spend:cn’,,;_; =A -ck+ 11 = Com,(11, ck)

cn;,, =A -ck+10
Change:cn’,,;_, = A -ck —1=Com,(—1,ck)

‘ﬁb * Proves balance, ¥'$;,, = ¥'$,,, = amount preservation

cn, - (en'y 4 +cn’yy) =Comy(0,ck)




Lattice-Based
Zero-Knowledge Proofs



Lattice-Based Zero-Knowledge Proofs

Background: Schnorr Protocol

Prover Verifier
(z = log, h)
u €ER Ly
a< g* t
cer{0,1}
c
- u, ifc=0 r »?2 Ja ifec=0
Fem u+z, ife=1 — 9 = ah, ifc=1

ZKP is useful tool for proving something about a secret is true while
minimizing leakage of information on the secret ((GMR85]).

ZKP has been extensively investigated and generalized to cover almost
any imaginable scenario! For instance, how to prove in ZK that:

* Anonymous authentication: | know a secret key that corresponds to
one of N public keys of a group, without identifying which key.

* Anonymous credentials: | know a signature from an authority on my
driver's license (containing my name, address, age,...) but | just want
to prove to an alcohol merchant that | am over 18, without leaking
who | am.

To handle such general situations, need to generalize definition (and
construction!) of ZK.



Lattice-Based Zero-Knowledge Proofs

Generalizing the definition of ZK to any relation R:

 LetR ={(v;w)} S VXW bearelation (e.g. R = {(v = (g,h);w = x): h = g*} in Schnorr).
* Letv € V be the common publicinputto P and V (e.g. h € < g > in Schnorr).
* Letw € W be a witness private input to P (e.g. x such that h = g* in Schnorr).

e Let Ly be language corresponding to R, i.e. set of v € V for which there exists a witness
w € W with (v;w) € R. (e.g. set < g > in Schnorr)

Goal: For a given relation R and v, prove in ZK that | know a witness w such that (v; w) € R.




Lattice-Based Zero-Knowledge Proofs

General definition of Zero-Knowledge Proof to any relation R.
Completeness: If P and IV follow protocol, VV's test will always pass.

Soundness: There exists an efficient (probabilistic polynomial time) algorithm (witness extractor) that given any
malicious prover P* that passes with non-negligible probability the honest verifier's test on input v, can extract a
witness w such that (v; w) € R.

Zero-Knowledge: The exists an efficient (expected polynomial time) algorithm (simulator) that given any malicious
verifier V*, can simulate protocol messages received by VV* from P on input v with a computationally indistinguishable
distribution.



Lattice-Based Zero-Knowledge Proofs

Definition (Commitment Scheme): The formal definition of a commitment scheme is given as follows. A
commitment scheme consists of the following three algorithms:

KeyGen: is a probabilistic polynomial-time (PPT) algorithm that outputs a commitment key ck and a
definition of message space M.

Com: is a PPT algorithm that on input the commitment key ck and a message u € M, outputs values C, 1,
where C is the commitment on u and r € R is the corresponding randomness sampled from
randomness space R -

Open: is a deterministic algorithm that on input ck, a message u and values C,r opens the commitment to
the value u.

Homomorphic commitment: A homomorphic commitment scheme is a non-interactive commitment scheme
such that the following property holds:

Com,(a,r,) + Comy (b, 1) = Comy(a+ b, 1, + 1)

{-Comg(a, 1) = Comy(a,qr,)




Lattice-Based Zero-Knowledge Proof for Integer Relations (Designs, Codes and

Cryptography, (to appear))

Definition (Challenge Space): Let R, = Z,[X]/ (X" + 1) for q € Z*. Let HW (f)) denote the Hamming weight of
the elements f € Z[X] and p < q/2 then the challenge space CHy; ,, is defined as follows:

CHyp ={f €EZ[X]:deg(f) =n—1AHW(f) = w A |[fllo = p}, and ACHE, = CHI, — CHE,

Lattice-Based Commitment

If the M-LWE problem is hard then
the commitment scheme is
computationally hiding.

If M-SIS problem is hard, then our
commitments scheme is
computationally binding with respect
to the relaxation factor d.

KeyGen: Create (A1, Az) € Rg™™ x RZ" XM Public parameters are:

A, = [I||A}], where A} «sRY*(m™Y)

n'x(m—v—n')

Ao = [0" *¥||Ly||AL], where Ab «sR!

Ay
Ao

Com: To commit to a message x € 723’, choose a random polynomial vector
r«sU({—B,...,B}"") and output the commitment

Set the commitment key ck = A = { ] , which is used to commit to x € R}’}/.

v /
C:=Comck(x,r) = A-r+x= A r+ enc(x), where enc(x) = {2{] c Ry,

ROpen: A valid opening of a commitment C is a tuple consisting of x € Rgl, reRy
and d € ACH(, ,,- The verifier checks that d-C = A-r+d-enc(x), and that |r| < 5.
Otherwise return 0.




Lattice-Based Zero-Knowledge Proof for Integer Relations

Constructions

1. Integer addition ZK protocol: Prove knowledge of X,Y,Z € Z suchthat X+ Y =Z € Z
2. Polynomial multiplication ZK protocol: Prove knowledge of polynomials X', Y, Z € R, such that X - Y = Z.

3. Integer multiplication ZK protocol: Prove knowledge of integers X,Y,Z € Z suchthat X - Y = Z

Techniques:
* One-shot proof: The shortness of the extracted witness is one of the main challenges in lattice-based zero-

knowledge proofs and arguments of knowledge.
* Since most of the extraction techniques use multiplication by the inverse of challenge differences, this can

be challenging when we deal with lattice-based proofs.

e Solution: introduction of relaxed arguments of knowledge.
« ->solving a system of equations of the form V - ¢ = y, where V is a Vandermonde matrix, and the entries

of this matrix are the different powers of challenges.
* The one-shot proof in CRYPTO’19 uses adjugate matrices instead of Vandermonde. - Use a challenge

space with large challenges



Lattice-Based Zero-Knowledge Proof for Integer Relations

Techniques (cont.):
For integer addition protocol: Motivated by [CRYPTO’18].

 [CRYPTO’18] provides efficient integer relations protocol for integers of length L <

213,

« However, for smaller integers, i.e. L € [2%,28] the [CRYPTO’18] approach can be outperformed by our

protocol.
* We use a chunking technique, applying on integers of length L and then perform the classical

addition/multiplication algorithm on each chunk.

Parameter Set 1 Set 2 22 Set 3 Set 4 22 Set 5 Set 6 22 ..
Modulus g 53T 531 [2'54] 537 531 [234] 536 536 [236] é Inteer Addition Protocol
Ring dim. n 27 27 27 28 28 28 29 29 29
L (Int. length) 2° 2° 2° 26 26 26 27 27 27
m=0(n) 896 896 NJA 1024 1024 N/A 1024 1024 NJA
Bra 280 280 N/A 73 73 N/A 157 157 N/A
log (8% 4) ~ 33.12 ~ 26.62 N/A ~ 31.27 ~ 24.78 N/A =~ 32.38 ~ 25.9 N/A HY H H
N - . ! & = i = = 4 Integer Multiplication Protocol
Nr. of repet. t 1 1 ~ 137 1 1 1 1 1 137
Proof size 195.89KB 189KB 1.8MB 1.02MB | 846.67TMB | 3.57TMB 2.09MB | 1.75MB | 6.23MB l
Parameter Set 1 Set 2 [22] Set 3 Set 4 [22] Set 5 Set 6 [22]
Modulus q 264 254 2.‘54 2:54 254 254 25[) 25() 2&(]
Ring dim. n 27 27 27 28 28 28 29 29 29
L (Int. length) 2° 2° 2° 26 26 26 27 27 27
m 896 896 N/A 1024 1024 N/A 1024 1024 N/A
Bint 280 280 N/A 73 73 NJA 16 16 NJA
Tog(B1a1) 33.12 26.94 N/A 315 25.01 N/A 29.10 26.88 N/A
Nr. of repet. t 1 1 ~ 137 1 1 1 1 1 137
Nr. of chunks k 8 16 1 16 64 1 32 64 1
Proof size 255.27KB | 239.96KB | 2.8MB 848.97TKB | 704.55KB | 5.66MB 2.14MB 1.76MB | 9.08MB




Quantum Random Oracle
Security Proof



Quantum Random Oracle Model [EUROCRYPT’20]

* Fujisaki-Okamoto (FO) transform for CPA = CCA security

 Commonly used to strengthen CPA = CCA security for pub-key encryption
e Start from a CPA secure pub key encryption scheme E
* Get a CCA secure pub key enc scheme E’ = FO(E)

* Used by most NIST PQC pub-key encryption scheme candidates

« We focus on the FOY = U"° o T (E) variant
 using two hash functions (H, H’), modelled as Random Oracles
* Focus on hash H used by U:
* ¢ = Enc(m; H'(m)), encapsulated key K = H(m,c)

e Assume two (mild) properties on the CPA pub-key encryption scheme:
* Det. Scheme T(E) is n — injective for sufficiently negligible 1
* CPA scheme E has sufficiently negligible decryption failure probability 6



Quantum Random Oracle Model [EUROCRYPT’20]

* Security proofs in the Quantum Random Oracle Model (QROM)
* Model hash functions used in FO transform as random oracles (q attack queries)

* Quantum accessible random oracle O, modelled as a unitary map U ,:
* Uplx)y) — [x)|y @ 0(x))

« Model QROM quantum attacker A19? as a sequence of attack unitaries A; interleaved with oracle queries to
U,, followed by a final measurement M to produce output:

o A0 =M AUy Ay_1°Up © -+ Up® A4
* A;outputsi’'th query to O

* Prior FO QROM Security Proofs (w/o strong “DS” properties): square root adv. Loss
+ Adv(CCA) < ./q - Adv(CPA) (simplified)

* Our result (with FFC/injectivity properties):
Adv(CCA) < q% - Adv(CPA) (simplified) (no sq-root adv loss)




Background: One-Way To Hiding (OWTH) Lemma

e Core tool in QROM CCA proofs: One-Way to Hiding (OWTH) Lemma [U14]
* Recall-FOuseof H: x* « $, z = Ency,(x*), encaps. key K = H(x",c)
* Classical ROM argument: if A(pk, ¢) can distinguish K from random, A must query H at (x*, ¢).
— proof reduction can extract x from A’s queries to H = break one-wayness of Enc.

* OWTH [U14]: QROM variant of above
* Goal of A : Distinguish whether O = H or O = G -- G differs from H only at x*
* Xy Ye <% // Hx"):i=yy ,6(x") = yg
* Advowrh(A): = |Pr[l « A (z* = Enc(x*), vy, y6)] — Pr[1 « Al (2" = Enc(x*), yu, y6)]l

* Goal of OWTH extractor algorithm B!9'): Given z* = Enc(x™), use A to efficiently extract x*
* Advoy(B): = Pr[x* « B9} (z* = Enc(x*),yy ,v6)]

* Original B strategy [U14], |0")= |H) (“single sided”): query-based extraction = measure a random
query of A
* [U14] OWTH bound: Adv,yry(A) < 2q - \/AdUOW(B) -- square-root loss!

» Subsequent work [AHU18], [BH+19 - |0')=|G) and |H) (“double sided”)]: Improve on “random query”, but still
qguery-based extraction

* [BH+19] bound: Advgyry(A) < 2 - \/Advoy (B) -- square-root loss remains!




Background: One-Way To Hiding (OWTH) Lemma

* Q: Square-root loss in query-based extraction unavoidable?
* A: [PQCrypto’19] Impossibility Result -- Yes!

e Main observation of [PQCrypto’19]— quantum origin of square-root loss:
* For g=1 query to O, there exists a quantum distinguisher A with

© Advoyr(A) =+ 2 - Advy,(B), where B is the query-based extractor that measures A’s query.

- Impossible to remove OWTH square-root loss with a query-based extractor

* Our observation: But, the above distinguisher suggests an alternative extraction method that can
circumvent the square-root loss:

* use a measurement-based extractor
* Extract knowledge of x* from A’s measurement,
* rather than only from A’s queries!



Background: One-Way To Hiding (OWTH) Lemma

* How does the “square-root advantage” distinguisher work?
* A makes a quantum query to O:

* 2 \Dx' |x’)|0) = P |X0) + X, VDx' 1X)]0) = Advg,,(B)=p,+ (assume <<1).

* The response [)°) from O is either
o M) = X 4T = B T P ) H)) 160 = H

* Py’ / N\ :
o WO) = VB MYE) + T P Bt e W) 160 = G
« To distinguish whether |°) is |[*) or [ ©):
* A makes a projective measurement on [?): M, w.r.t. a measurement vector |v)

e |v) :=vector in span(|yT), [¢)) at an angle of = % from |ypf)

« M, returns 1 with prob. p°: = ||proj. of [} along |v)||?



Our ldea: Measurement-Based Extraction

 Summary - our measurement-based extraction idea (assume 1 oracle query, optimal
distinguisher A) -- algorithm C:
1. Run cﬂllG)(z* = Enc(x™), yy, Y¢) to output oracle query
2. Process the query with the oracle Ujgy // state 2 lY©)
3. Let A perform its proj. meas. w.r.t. [v) // state = |v) with prob. p3 = ||[proj,([W)||? =
4

Measure the input reg. and ret. result // state = |x*)|-) with prob. p, = ||projs(|v)||* =

Overall extraction success probability := Advgy, (C) = p3 - py = i

NIRN]|R



Our ldea: Measurement-Based Extraction

 Summary - our measurement-based extraction idea
e (assume 1 oracle query, optimal distinguisher A) -- algorithm C:

1. Run c/q'lG)(z* = Enc(x"), yy, y;) to output oracle query

2. Process the query with the oracle Ug // state = &)

3. Let A performits proj. meas. wrt |[v) // state = |v) with prob. ps = ||proj,(JY)||? = %
3.1 Run A, -- pre-meas. unitary // rotates |v) to comp. basis st. |1) := A, |v)
3.2 Run A’s comp. basis out. Meas. M // state = |1) with prob. ||proj; (A, [P DI|? = %
3.3 Run A5 -- Rewind back to query // rotates |1) back to |[v) = A1)

4. Measure the input reg. and ret. result // state =|x*)|-) with prob. p, = ||projs(Jv)||* =

I

Overall extraction success probability := Advgy (C) = p3 - pa =
- “Measure-Rewind-Measure” (MRM) technique

N =



Our Idea: Measurement-Based Extraction

* Comparison with prior OWTH results:

OWTH Lemma | Adv(A) bound | Secret set size | Extractor oracles | A’s dist.
|S] event

Orig. [U14] 2d.JAdv,,,  Arbitrary |H) or |G) Arbitrary
Semi-Class. 2./d Adv,y, Arbitrary (|H)\S or |G)\S) Arbitrary
[AHU18] and 1

Orig. Double- 2./Advoy, 1 |H) and |G) Arbitrary
Sided [BH+19]

MRM 4d Advyy,  Arbitrary |H) and |G) 1<€A

d := A’s oracle depth, Adv,y, := extractor’s success probability,
S :=set on which G, H differ, |H)\S :=restriction of |H) to complement(S), 1 := indicator function of S
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