Security and Privacy in

 Post-Quantum WorldDr. Veronika Kuchta

Research Fellow

Monash University
Australia

Outline

Post-Quantum Cryptography

- Motivation for lattice-based cryptography
- Lattice-Based Ring CT
- Lattice-Based Zero-Knowledge Proofs

Quantum Random Oracle Security Proof

Motivation for Lattice-Based Cryptography

Post-Quantum Cryptography

Post-Quantum Cryptography

- Once a quantum computer (QC) will be available for the daily use, it will break RSA
- Quantum supremacy (defined by US scientist John Preskill) = ability of QC to perform computations faster than classical computers.
- NIST (US) initiated PQC standardization process to solicit, evaluate and standardize one or more quantum-resistant public-key cryptosystems:
- How do we secure our internet data (stored, transmitted via the Internet)?
- There are several post-quantum candidates which look into this question:
- Lattice-based cryptography
- Code-based cryptography
- Symmetric primitives
- Isogeny-based cryptography
- Multi-variate cryptography

Post-Quantum Cryptography

Post-Q.	Security	Efficiency	Compactness	Applications
Lattice-based	High Worse-case	High Signing + Verification +	Medium Signature Size + Pub-Key Size +	High BLISS, FHE..
Code-based	High	Medium Signing Verification +	Medium Signature Size + Pub-Key Size -	Low None.
Multivariatebased	High	High Signing + Verification +	Medium Signature Size + Pub-Key Size -	Medium Only DS: Rainbow.
Hash-based	High	Low Signing Verification -	High Signature Size + Pub-Key Size +	Low None
Isogenybased	High	Low Signing Verification -	Medium Signature Size -Pub-Key Size +	Low None.

Lattice-Based Cryptography

Motivation: Efficiency

Popular cryptosystems are relatively inefficient;
For security level 2^{n} :
RSA -- key length $O\left(n^{3}\right)$, computation $O\left(n^{6}\right)$.
ECC -- key length $O(n)$, computation $O\left(n^{2}\right)$.
Structured ('Ring based') Lattices -- key length and computation $\boldsymbol{O}(\boldsymbol{n})$ asymptotically, as \boldsymbol{n} grows towards infinity.
In Practice, for typical security parameter $n \approx 100$, with best current schemes, typically have:
Structured Lattice crypto: Computation ≈ 100 times faster than RSA
Structured Lattice crypto: ciphertext/key length \approx RSA key/ciphertext

Lattice-Based Cryptography

Definition: An n dimensional (full-rank) lattice $L(B)$ is the set of all integer linear combinations of some basis set of linearly independent vectors $\vec{b}_{1}, \ldots \vec{b}_{n} \in \mathbb{R}^{n}$:

$$
L(B):=\left\{c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}+\cdots+c_{n} \vec{b}_{n}: c_{i} \in \mathbb{Z}, i=1, \ldots, n\right\} .
$$

Call a $n \times n$ matrix $B=\left(\vec{b}_{1}, \ldots \vec{b}_{n}\right)$ a basis for $L(B)$.

Example: in 2 dimensions, i.e. $n=2$:

$$
\begin{array}{cc}
\vec{b}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], & \vec{b}_{2}=\left[\begin{array}{c}
1.2 \\
1
\end{array}\right] \\
\vec{b}_{1}^{\prime}=\left[\begin{array}{c}
-0.6 \\
2
\end{array}\right], & \vec{b}_{2}^{\prime}=\left[\begin{array}{c}
-0.3 \\
3
\end{array}\right]
\end{array}
$$

Lattice-Based Cryptography

Definition: For an n-dimensional lattice basis $B=\left(\vec{b}_{1}, \ldots \vec{b}_{n}\right) \in \mathbb{R}^{n \times n}$, the fundamental parallelepiped of B, denoted $P(B)$, is the set of all real-valued $[0,1)$-linear combinations of some basis set of linearly independent vectors $\left(\vec{b}_{1}, \ldots \vec{b}_{n}\right) \in \mathbb{R}^{n}$:

$$
P(B):=\left\{c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}+\cdots+c_{n} \vec{b}_{n}: 0 \leq c_{i}<1, i=1, \ldots, n\right\}
$$

For an n-dimensional lattice $L(B)$ the determinant of $L(B)$ is the n-dim. volume of the $P(B)$

Example: $2-\operatorname{dim} B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

Lattice-Based Cryptography

For cryptographic security, need computationally hard lattice problems. Many problems related to geometry of lattices seem to be hard.

The most basic geometric quantity about a lattice is its minimum (aka Minkowski first minimum).

Definition: For an n-dim. lattice L it's minimum $\lambda(L)$ is the length of the
 shortest non-zero vector of $L: \lambda(L)=\min (\|\vec{b}\|: \vec{b} \in L \backslash 0)$.

For any n-dim. lattice L holds: $\lambda(L) \leq \sqrt{n} \cdot \operatorname{det} L^{\frac{1}{n}}$.

Lattice-Based Cryptography

Ajtai's Random q-ary perp Lattice: Given an integer q and a uniformly random matrix $A \in \mathbb{Z}_{q}^{n \times m}$, the q-ary perp lattice $L_{q}^{\perp}(A)=\left\{\vec{v} \in \mathbb{Z}^{m}: A \cdot \vec{v}=\overrightarrow{0} \bmod q\right\}$.

Lattice-based problems.
$\boldsymbol{\gamma}$-Shortest Vector Problem ($\boldsymbol{\gamma}$-SVP): Given a basis B for n-dim lattice, find $\vec{b} \in L$ such that:

$$
0<\|\vec{b}\|<\gamma \cdot \lambda(L)
$$

Small Integer Solution Problem SIS ${ }_{q, m, n, \beta}$: Given n and a matrix A sampled uniformly in $\mathbb{Z}_{q}^{n \times m}$, find $\vec{v} \in$ $\mathbb{Z}^{m} \backslash\{0\}$ such that $A \cdot \vec{v}=\overrightarrow{0} \bmod q$ and $\|\vec{v}\| \leq \beta$

Search-LWE Problem: Given q, n, m, α, a matrix $A \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$ and $\vec{y}=A \cdot \vec{s}+\vec{e} \bmod q$ (with $\vec{e} \hookleftarrow \chi_{\alpha q}^{m}$ and $\vec{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$, find \vec{s}.

Lattice-Based RingCT

Lattice-Based RingCT [ACISP'19]

A group signature scheme allow a signer (Alice) as a member of a group to anonymously sign a message on behalf of the group with w users.

A group manager (GM) is in charge of establishing pairs of (public key, secret key) $=(p k, s k)$.

A ring signature scheme allow a signer (Alice) to anonymously sign a message on behalf of the group with w users.

No GM is needed.

Lattice-Based RingCT [ACISP'19]

A ring signature has the following properties:

- All the properties of a digital signature,
- Anonymity: the identity of Alice cannot be determined,
- Spontaneity: any ring of users can be used as a group,
- non-Linkability: given two messages and their signatures, no one can tell if the signatures were from the same signer or not,
- non-Framebility: no set of users can forge a signature for a non-participating ring member.

Example:
Cryptocurrencies like Bytecoin (BCN) 2012, ShadowCoin,
Monero 2016 (based on Liu's PhD thesis and paper); Ring CT v 1.0 and v 2.0.

Lattice-Based RingCT [ACISP'19]

LRCT Scheme:

- BLISS (Bimodal Lattice Signature Scheme)
- Post-quantum cryptography
- Five polynomial time algorithms

Accounts - Wallets		
	Public "act"	Private "ask"
User	Public-Key	Private-Key Coin

Correctness is satisfied
Version-1: Single-Input Single-Output (SISO) wallets. (ACISP2018)

Version-2: Multiple-Input Multiple-Output (MIMO) wallets. (ACISP2019)

Input Wallet (IW)		
	Public "act"	Private "ask"
User	$\mathbf{a}_{(\text {in })}^{(k)}$	$\mathbf{S}_{(\text {in })}^{(k)}$
Coin	$\mathbf{c n}_{(\text {in })}^{(k)}$	$\mathbf{c k}_{\text {(in) }}^{(k)}$

Output Wallet (OW)		
	Public "act"	Private "ask"
User	$\mathbf{a}_{\text {(out) }}^{(j)}$	$\mathbf{S}_{\text {(out) }}^{(j)}$
Coin	$\mathbf{c n}_{\text {(out) }}^{(j)}$	$\mathbf{c k}_{\text {(out) }}^{(j)}$

MIMO.LRCT	Description
Setup	Creates the public parameters
KeyGen	Generates the public keys
Mint	Produces the coins
Spend	Transfers input wallets to output wallets
Verify	Verifies transactions

$$
\begin{aligned}
& \text { SISO: } k=1 \text { and } j=1 \\
& \text { MIMO: } k>1 \text { and } j>1
\end{aligned}
$$

Lattice-Based RingCT [ACISP'19]

```
Algorithm 1 MIMO.L2RS.KeyGen - Key-pair Generation (a, S)
Input: Pub-Param: \(\mathbf{A} \in \mathcal{R}_{q}^{2 \times(m-1)}\).
Output: (a, \(\mathbf{S}\) ), being the public-key and the private-key, respectively.
1: procedure MIMO.L2RS.KeyGen(A)
2: Let \(\mathbf{S}^{T}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{m-1}\right) \in \mathcal{R}_{q}^{1 \times(m-1)}\), where \(\mathbf{s}_{i} \leftarrow\left(-2^{\gamma}, 2^{\gamma}\right)^{n}\), for \(1 \leq i \leq m-1\)
3: \(\quad\) Compute \(\mathbf{a}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)^{T}=\mathbf{A} \cdot \mathbf{S} \bmod q \in \mathcal{R}_{q}^{2}\).
4: return (a, S).
```


Lattice-Based RingCT [ACISP'19]

```
Algorithm 4 MIMO.LRCT.Mint
Input: \(\left(\mathbf{A} \in \mathcal{R}_{q}^{2 \times(m-1)}, \$ \in\left[0,2^{\ell_{\mathcal{S}}-1}\right]\right)\), being the public parameter \(\mathbf{A}\) and the amount \(\$\).
Output: (cn, ck), where they are the coin and the coin key, respectively.
    procedure MIMO.LRCT. \(\operatorname{Mint}(\mathbf{A}, \$)\)
        Let \(\mathbf{c k}^{T}=\left(\mathbf{c k}_{1}, \ldots, \mathbf{c k}_{m-1}\right) \in \mathcal{R}_{q}^{1 \times(m-1)}\) with \(\mathbf{c k}_{i} \leftarrow\left(-2^{\gamma}, 2^{\gamma}\right)^{n}\), for \(1 \leq i \leq m-1\)
        \(\mathbf{c n}=\operatorname{Com}_{\mathbf{A}}(\$, \mathbf{c k})=\mathbf{A} \cdot \mathbf{c k}+\overline{\$} \bmod q \in \mathcal{R}_{q}^{2}\) with \(\overline{\$}=(0, \$)^{T} \in \mathcal{R}_{q}^{1 \times 2}\)
        return (cn, ck)
```


Lattice-Based RingCT [ACISP'19]

MIMO. LRCT. Spend protocol

1. Determines the amount $\$_{i n}$ to spend: $N_{\text {in }}$ of $I W$
2. Determines the Bob's wallets $N_{\text {out }}$ of $O W$, using Bob's $p k$
3. Proves balance, $\Sigma \boldsymbol{\$}_{\text {in }}=\Sigma \boldsymbol{\$}_{\text {out }} \rightarrow$ amount preservation
4. Verifies $\boldsymbol{\$}_{\text {out }} \rightarrow$ range preservation (PoK Range)
5. Securely sends $\mathbf{c k}_{\text {out }}$ and $\$_{\text {out }}$ to Bob
6. Creates the List of the Ring Signature \rightarrow adding $N_{\text {in }}$ of $I W$

Bob
7. Signs the transaction $T X$ with $(\mathbf{s k}, \mathbf{c k}) \rightarrow$ SigGen (PoK)
8. Sets $T X=\{\mu, I W, O W\}$, Sig $=\left\{P o K, P_{\text {P }} K_{\text {Range }}\right\}$
9. Outputs TX, Sig and Linking Tags

Lattice-Based RingCT [ACISP'19]

Range Proof

$$
\mathbf{c n}_{\text {in }}=A \cdot \mathbf{c k}+\mathbf{1 0} \begin{aligned}
& \text { Spend: } \mathbf{c} \mathbf{n}_{\text {out }-1}=A \cdot \mathbf{c k}+5=\operatorname{Com}_{A}(5, \mathbf{c k}) \\
& \text { Change: } \mathbf{c n}_{\text {out }-2}=A \cdot \mathbf{c k}+5=\operatorname{Com}_{A}(5, \mathbf{c k})
\end{aligned}
$$

- Proves balance, $\Sigma \boldsymbol{\$}_{\text {in }}=\Sigma \boldsymbol{\$}_{\text {out }} \rightarrow$ amount preservation

$$
\begin{gathered}
\mathbf{c n}_{\text {in }}-\left(\mathbf{c n}_{\text {out }-1}+\mathbf{c n}_{\text {out }-2}\right)=\mathbf{C o m}_{A}(0, \mathbf{c k}) \\
\mathbf{c n}_{\text {in }}=A \cdot \mathbf{c k}+10 \xrightarrow{\text { Spend: } \mathbf{c n}_{\text {out }-1}^{\prime}=A \cdot \mathbf{c k}+11=\operatorname{Com}_{A}(11, \mathbf{c k})} \\
\text { Change: } \mathbf{c n}_{\text {out }-2}^{\prime}=A \cdot \mathbf{c k}-1=\operatorname{Com}_{A}(-1, \mathbf{c k})
\end{gathered}
$$

- Proves balance, $\Sigma \boldsymbol{\$}_{\text {in }}=\Sigma \boldsymbol{\$}_{\text {out }} \rightarrow$ amount preservation

$$
\mathbf{c n}_{\text {in }}-\left(\mathbf{c n}_{\text {out }-1}^{\prime}+\mathbf{c n}_{\text {out }-2}^{\prime}\right)=\operatorname{Com}_{A}(0, \mathbf{c k})
$$

Lattice-Based Zero-Knowledge Proofs

Lattice-Based Zero-Knowledge Proofs

Background: Schnorr Protocol

ZKP is useful tool for proving something about a secret is true while minimizing leakage of information on the secret ([GMR85]).

ZKP has been extensively investigated and generalized to cover almost any imaginable scenario! For instance, how to prove in ZK that:

- Anonymous authentication: I know a secret key that corresponds to one of N public keys of a group, without identifying which key.
- Anonymous credentials: I know a signature from an authority on my driver's license (containing my name, address, age,...) but I just want to prove to an alcohol merchant that I am over 18, without leaking whol am.

To handle such general situations, need to generalize definition (and construction!) of ZK.

Lattice-Based Zero-Knowledge Proofs

Generalizing the definition of ZK to any relation R :

- Let $R=\{(v ; w)\} \subseteq V \times W$ be a relation (e.g. $R=\left\{(v=(g, h) ; w=x): h=g^{x}\right\}$ in Schnorr).
- Let $v \in V$ be the common public input to P and V (e.g. $h \in<g>$ in Schnorr).
- Let $w \in W$ be a witness private input to P (e.g. x such that $h=g^{x}$ in Schnorr).
- Let L_{R} be language corresponding to R, i.e. set of $v \in V$ for which there exists a witness $w \in W$ with $(v ; w) \in R$. (e.g. set $<g>$ in Schnorr)

Goal: For a given relation R and v, prove in ZK that I know a witness w such that $(v ; w) \in R$.

Lattice-Based Zero-Knowledge Proofs

General definition of Zero-Knowledge Proof to any relation R.
Completeness: If P and V follow protocol, V 's test will always pass.
Soundness: There exists an efficient (probabilistic polynomial time) algorithm (witness extractor) that given any malicious prover P^{*} that passes with non-negligible probability the honest verifier's test on input v, can extract a witness w such that $(v ; w) \in R$.

Zero-Knowledge: The exists an efficient (expected polynomial time) algorithm (simulator) that given any malicious verifier V^{*}, can simulate protocol messages received by V^{*} from P on input v with a computationally indistinguishable distribution.

Lattice-Based Zero-Knowledge Proofs

Definition (Commitment Scheme): The formal definition of a commitment scheme is given as follows. A commitment scheme consists of the following three algorithms:

KeyGen: is a probabilistic polynomial-time (PPT) algorithm that outputs a commitment key $c k$ and a definition of message space $\mathcal{M}_{c k}$.
Com: is a PPT algorithm that on input the commitment key $c k$ and a message $\mu \in \mathcal{M}_{c k}$ outputs values C, r, where C is the commitment on μ and $r \in \mathcal{R}_{c k}$ is the corresponding randomness sampled from randomness space $\mathcal{R}_{c k}$.
Open: is a deterministic algorithm that on input $c k$, a message μ and values C, r opens the commitment to the value μ.

Homomorphic commitment: A homomorphic commitment scheme is a non-interactive commitment scheme such that the following property holds:

$$
\begin{aligned}
& \operatorname{Com}_{c k}\left(a, r_{a}\right)+\operatorname{Com}_{c k}\left(b, r_{b}\right)=\operatorname{Com}_{c k}\left(a+b, r_{a}+r_{b}\right) \\
& \zeta \cdot \operatorname{Com}_{c k}\left(a, r_{a}\right)=\operatorname{Com}_{c k}\left(\zeta a, \zeta r_{a}\right)
\end{aligned}
$$

Lattice-Based Zero-Knowledge Proof for Integer Relations (Designs, Codes and Cryptography, (to appear))

Definition (Challenge Space): Let $\mathcal{R}_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$ for $q \in \mathbb{Z}^{+}$. Let $H W(f)$ denote the Hamming weight of the elements $f \in Z[X]$ and $p \leq q / 2$ then the challenge space $\mathcal{C} \mathcal{H}_{\omega, p}^{n}$ is defined as follows:

$$
\mathcal{C} \mathcal{H}_{\omega, p}^{n}=\left\{f \in \mathbb{Z}[X]: \operatorname{deg}(f)=n-1 \wedge H W(f)=\omega \wedge\|f\|_{\infty}=p\right\}, \quad \text { and } \quad \Delta \mathcal{C} \mathcal{H}_{\omega, p}^{n}=\mathcal{C} \mathcal{H}_{\omega, p}^{n}-\mathcal{C} \mathcal{H}_{\omega, p}^{n}
$$

Lattice-Based Commitment

If the M-LWE problem is hard then the commitment scheme is computationally hiding.

If $\mathrm{M}-\mathrm{SIS}$ problem is hard, then our commitments scheme is computationally binding with respect to the relaxation factor d.

KeyGen: Create $\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right) \in \mathcal{R}_{q}^{\nu \times m} \times \mathcal{R}_{q}^{n^{\prime} \times m}$. Public parameters are:

$$
\begin{aligned}
& \mathbf{A}_{1}=\left[\mathbf{I}_{\nu} \| \mathbf{A}_{1}^{\prime}\right], \quad \text { where } \quad \mathbf{A}_{1}^{\prime} \leftarrow s \mathcal{R}_{q}^{\nu \times(m-\nu)} \\
& \mathbf{A}_{2}=\left[\mathbf{0}^{n^{\prime} \times \nu}\left\|\mathbf{I}_{n^{\prime}}\right\| \mathbf{A}_{2}^{\prime}\right], \quad \text { where } \quad \mathbf{A}_{2}^{\prime} \leftarrow s \mathcal{R}_{q}^{n^{\prime} \times\left(m-\nu-n^{\prime}\right)}
\end{aligned}
$$

Set the commitment key $c k=\mathbf{A}=\left[\begin{array}{l}\mathbf{A}_{\mathbf{1}} \\ \mathbf{A}_{2}\end{array}\right]$, which is used to commit to $\mathbf{x} \in \mathcal{R}_{q}^{n^{\prime}}$.
Com: To commit to a message $\mathbf{x} \in \mathcal{R}_{q}^{n^{\prime}}$, choose a random polynomial vector $\mathbf{r} \leftarrow s \mathcal{U}\left(\{-\mathcal{B}, \ldots, \mathcal{B}\}^{m n}\right)$ and output the commitment
$\mathrm{C}:=\operatorname{Com}_{c k}(\mathbf{x}, \mathbf{r})=\mathbf{A} \cdot \mathbf{r}+\mathbf{x}=\mathbf{A} \cdot \mathbf{r}+\operatorname{enc}(\mathbf{x})$, where enc $(\mathbf{x})=\left[\begin{array}{c}\mathbf{0}^{\nu} \\ \mathbf{x}\end{array}\right] \in \mathcal{R}_{q}^{\nu+n^{\prime}}$.
ROpen: A valid opening of a commitment C is a tuple consisting of $\mathbf{x} \in \mathcal{R}_{q}^{n^{\prime}}, \mathbf{r} \in \mathcal{R}_{q}^{m}$ and $\mathrm{d} \in \Delta \mathcal{C} \mathcal{H}_{\omega, p}^{n}$. The verifier checks that $\mathrm{d} \cdot \mathrm{C}=\mathbf{A} \cdot \mathbf{r}+\mathrm{d} \cdot \mathrm{enc}(\mathbf{x})$, and that $\|\mathbf{r}\| \leq \beta$. Otherwise return 0

Lattice-Based Zero-Knowledge Proof for Integer Relations

Constructions

1. Integer addition ZK protocol: Prove knowledge of $X, Y, Z \in \mathbb{Z}$ such that $X+Y=Z \in \mathbb{Z}$
2. Polynomial multiplication $Z K$ protocol: Prove knowledge of polynomials $\mathcal{X}, \mathcal{Y}, Z \in \mathcal{R}_{q}$ such that $\mathcal{X} \cdot \mathcal{Y}=Z$.
3. Integer multiplication ZK protocol: Prove knowledge of integers $X, Y, Z \in \mathbb{Z}$ such that $X \cdot Y=Z$

Techniques:

- One-shot proof: The shortness of the extracted witness is one of the main challenges in lattice-based zeroknowledge proofs and arguments of knowledge.
- Since most of the extraction techniques use multiplication by the inverse of challenge differences, this can be challenging when we deal with lattice-based proofs.
- Solution: introduction of relaxed arguments of knowledge.
- -> solving a system of equations of the form $V \cdot \vec{c}=\vec{y}$, where V is a Vandermonde matrix, and the entries of this matrix are the different powers of challenges.
- The one-shot proof in CRYPTO'19 uses adjugate matrices instead of Vandermonde. \rightarrow Use a challenge space with large challenges

Lattice-Based Zero-Knowledge Proof for Integer Relations

Techniques (cont.):

- For integer addition protocol: Motivated by [CRYPTO'18].
- [CRYPTO'18] provides efficient integer relations protocol for integers of length $L \leq 2^{13}$.
- However, for smaller integers, i.e. $L \in\left[2^{4}, 2^{8}\right]$ the [CRYPTO'18] approach can be outperformed by our protocol.
- We use a chunking technique, applying on integers of length L and then perform the classical addition/multiplication algorithm on each chunk.

Parameter	Set 1	Set 2	$[22]$	Set 3	Set 4	$[22]$	Set 5	Set 6	$[22]$
Modulus q	2^{34}	2^{34}	2^{34}	2^{34}	2^{34}	2^{34}	2^{36}	2^{36}	2^{36}
Ring dim. n	2^{7}	2^{7}	2^{7}	2^{8}	2^{8}	2^{8}	2^{9}	2^{9}	2^{9}
$L($ Int. length $)$	2^{5}	2^{5}	2^{5}	2^{6}	2^{6}	2^{6}	2^{7}	2^{7}	2^{7}
$\widetilde{m}=\mathcal{O}(n)$	896	896	N / A	1024	1024	N / A	1024	1024	N / A
$\mathcal{B}_{I A}$	280	280	N / A	73	73	N / A	157	157	N / A
$\log \left(\beta_{I A}^{\prime}\right)$	≈ 33.12	≈ 26.62	N / A	≈ 31.27	≈ 24.78	N / A	≈ 32.38	≈ 25.9	N / A
Nr. of chunks k	4	8	1	4	16	1	16	32	1
Nr. of repet. t	1	1	≈ 137	1	1	1	1	1	137
Proof size	195.89 KB	189 KB	1.8 MB	1.02 MB	846.67 MB	3.57 MB	2.09 MB	1.75 MB	6.23 MB

Integer Multiplication Protocol

Parameter	Set 1	Set 2	$[22]$	Set 3	Set 4	$[22]$	Set 5	Set 6	$[22]$
Modulus q	2^{34}	2^{34}	2^{34}	2^{34}	2^{34}	2^{34}	2^{30}	2^{30}	2^{30}
Ring dim. n	2^{7}	2^{7}	2^{7}	2^{8}	2^{8}	2^{8}	2^{9}	2^{9}	2^{9}
L (Int. length)	2^{5}	2^{5}	2^{5}	2^{6}	2^{6}	2^{6}	2^{7}	2^{7}	2^{7}
\widetilde{m}	896	896	$\mathrm{~N} / \mathrm{A}$	1024	1024	$\mathrm{~N} / \mathrm{A}$	1024	1024	$\mathrm{~N} / \mathrm{A}$
$\mathcal{B}_{I M}$	280	280	$\mathrm{~N} / \mathrm{A}$	73	73	N / A	16	16	N / A
$\log \left(\beta_{I M}\right)$	33.12	26.94	$\mathrm{~N} / \mathrm{A}$	31.5	25.01	$\mathrm{~N} / \mathrm{A}$	29.10	26.88	$\mathrm{~N} / \mathrm{A}$
Nr. of repet. t	1	1	≈ 137	1	1	1	1	1	137
Nr. of chunks k	8	16	1	16	64	1	32	64	1
Proof size	255.27 KB	239.96 KB	2.8 MB	848.97 KB	704.55 KB	5.66 MB	2.14 MB	1.76 MB	9.08 MB

Quantum Random Oracle Security Proof

Quantum Random Oracle Model [EUROCRYPT’20]

- Fujisaki-Okamoto (FO) transform for CPA \rightarrow CCA security
- Commonly used to strengthen CPA \rightarrow CCA security for pub-key encryption
- Start from a CPA secure pub key encryption scheme E
- Get a CCA secure pub key enc scheme $E^{\prime}=F O(E)$
- Used by most NIST PQC pub-key encryption scheme candidates
- We focus on the $F O^{\nvdash}=U^{\nvdash \circlearrowleft} \circ T(\mathrm{E})$ variant
- using two hash functions (H, H^{\prime}), modelled as Random Oracles
- Focus on hash H used by U :
- $c=\operatorname{Enc}\left(m ; H^{\prime}(m)\right.$), encapsulated key $K=H(m, c)$
- Assume two (mild) properties on the CPA pub-key encryption scheme:
- Det. Scheme $T(E)$ is η-injective for sufficiently negligible η
- CPA scheme E has sufficiently negligible decryption failure probability δ

Quantum Random Oracle Model [EUROCRYPT'20]

- Security proofs in the Quantum Random Oracle Model (QROM)
- Model hash functions used in FO transform as random oracles (q attack queries)
- Quantum accessible random oracle O, modelled as a unitary map U_{0} :
- $U_{O}|x\rangle|y\rangle \mapsto|x\rangle|y \oplus O(x)\rangle$
- Model QROM quantum attacker $\mathcal{A}^{|0\rangle}$ as a sequence of attack unitaries \mathcal{A}_{i} interleaved with oracle queries to U_{0}, followed by a final measurement \mathbb{M} to produce output:
- $\mathcal{A}^{|0\rangle}:=\mathbb{M}^{\circ} \mathcal{A}_{N}{ }^{\circ} U_{O}{ }^{\circ} \mathcal{A}_{N-1}{ }^{\circ} U_{O}{ }^{\circ} \cdots U_{O}{ }^{\circ} \mathcal{A}_{1}$
- \mathcal{A}_{i} outputs i'th query to O
- Prior FO QROM Security Proofs (w/o strong "DS" properties): square root adv. Loss
- $\operatorname{Adv}(C C A) \leq \sqrt{q \cdot \operatorname{Adv}(C P A)}$ (simplified)
- Our result (with FFC/injectivity properties):

$$
\operatorname{Adv}(C C A) \leq q^{2} \cdot A d v(C P A) \quad(\text { simplified })(\text { no sq-root adv loss })
$$

Background: One-Way To Hiding (OWTH) Lemma

- Core tool in QROM CCA proofs: One-Way to Hiding (OWTH) Lemma [U14]

- Recall - FO use of $H: x^{*} \leftarrow \$, \quad z=E n c_{p k}\left(x^{*}\right)$, encaps. key $K=H\left(x^{*}, c\right)$
- Classical ROM argument: if $\mathcal{A}(p k, c)$ can distinguish K from random, \mathcal{A} must query H at $\left(x^{*}, c\right)$.
\rightarrow proof reduction can extract x from \mathcal{A} 's queries to $H \rightarrow$ break one-wayness of Enc.
- OWTH [U14]: QROM variant of above
- Goal of \mathcal{A} : Distinguish whether $O=H$ or $O=G$-- G differs from H only at x^{*}
- $x^{*}, y_{H}, y_{G} \leftarrow \$ / / H\left(x^{*}\right):=y_{H}, G\left(x^{*}\right):=y_{G}$
- $\operatorname{Adv}_{\text {OWTH }}(\mathcal{A}):=\left|\operatorname{Pr}\left[1 \leftarrow \mathcal{A}^{|H\rangle}\left(z^{*}=\operatorname{Enc}\left(x^{*}\right), y_{H}, y_{G}\right)\right]-\operatorname{Pr}\left[1 \leftarrow \mathcal{A}^{|G\rangle}\left(z^{*}=\operatorname{Enc}\left(x^{*}\right), y_{H}, y_{G}\right)\right]\right|$
- Goal of OWTH extractor algorithm $\boldsymbol{B}^{\left|\boldsymbol{O}^{\prime}\right\rangle}$: Given $z^{*}=\operatorname{Enc}\left(x^{*}\right)$, use \mathcal{A} to efficiently extract x^{*}
- $A d v_{O W}(B):=\operatorname{Pr}\left[x^{*} \leftarrow B^{\left|0^{\prime}\right\rangle}\left(z^{*}=\operatorname{Enc}\left(x^{*}\right), y_{H}, y_{G}\right)\right]$
- Original B strategy [U14], $\left|O^{\prime}\right\rangle=|H\rangle$ ("single sided"): query-based extraction \rightarrow measure a random query of A
- [U14] OWTH bound: $\operatorname{Adv_{\text {OWTH}}(\mathcal {A})\leq 2q\cdot \sqrt {Adv_{OW}(B)}}$-- square-root loss!
- Subsequent work [AHU18], [BH+19-| $\left.\boldsymbol{O}^{\prime}\right\rangle=|\boldsymbol{G}\rangle$ and $|\boldsymbol{H}\rangle$ ("double sided")]: Improve on "random query", but still query-based extraction
- $[\mathrm{BH}+19]$ bound: $A d v_{O W T H}(\mathcal{A}) \leq 2 \cdot \sqrt{A d v_{O W}(B)}$-- square-root loss remains!

Background: One-Way To Hiding (OWTH) Lemma

- Q: Square-root loss in query-based extraction unavoidable?
- A: [PQCrypto'19] Impossibility Result -- Yes!
- Main observation of [PQCrypto'19]- quantum origin of square-root loss:
- For $q=1$ query to 0 , there exists a quantum distinguisher A with
- $A d v_{\text {OWTH }}(\mathcal{A})=\sqrt{2 \cdot A d v_{\text {ow }}(B)}$, where B is the query-based extractor that measures \mathcal{A} 's query.
\rightarrow Impossible to remove OWTH square-root loss with a query-based extractor
- Our observation: But, the above distinguisher suggests an alternative extraction method that can circumvent the square-root loss:
- use a measurement-based extractor
- Extract knowledge of x^{*} from A's measurement,
- rather than only from A's queries!

Background: One-Way To Hiding (OWTH) Lemma

- How does the "square-root advantage" distinguisher work?
- \mathcal{A} makes a quantum query to O :
- $\sum_{x^{\prime}} \sqrt{p_{x^{\prime}}}\left|x^{\prime}\right\rangle|0\rangle=\sqrt{p_{x^{*}}}\left|x^{*}\right\rangle|0\rangle+\sum_{x^{\prime} \neq x^{*}} \sqrt{p_{x^{\prime}}}\left|x^{\prime}\right\rangle|0\rangle \rightarrow \operatorname{Adv}_{\mathrm{ow}}(\mathrm{B})=p_{x^{*}}($ assume $\ll 1)$.
- The response $\left|\psi^{0}\right\rangle$ from O is either
$\cdot \mapsto\left|\psi^{H}\right\rangle:=\sqrt{p_{x^{*}}}\left|x^{*}\right\rangle\left|y_{H}\right\rangle+\sqrt{1-p_{x^{*}}} \sum_{x^{\prime} \neq x^{*}} \frac{\sqrt{p_{x^{\prime}}}}{\sqrt{1-p_{x^{*}}}}\left|x^{\prime}\right\rangle\left|H\left(x^{\prime}\right)\right\rangle$ if $\boldsymbol{O}=\boldsymbol{H}$
$\cdot \mapsto\left|\psi^{G}\right\rangle:=\sqrt{p_{x^{*}}}\left|x^{*}\right\rangle\left|y_{G}\right\rangle+\sqrt{1-p_{x^{*}}} \sum_{x^{\prime} \neq x^{*}} \frac{\sqrt{p_{x^{\prime}}}}{\sqrt{1-p_{x^{*}}}}\left|x^{\prime}\right\rangle\left|H\left(x^{\prime}\right)\right\rangle$ if $O=G$
- To distinguish whether $\left|\psi^{O}\right\rangle$ is $\left|\psi^{H}\right\rangle$ or $\left|\psi^{G}\right\rangle$:
- \mathcal{A} makes a projective measurement on $\left|\psi^{O}\right\rangle: \mathbb{M}_{v}$ w.r.t. a measurement vector $|v\rangle$
- $|v\rangle:=$ vector in $\operatorname{span}\left(\left|\psi^{H}\right\rangle,\left|\psi^{G}\right\rangle\right)$ at an angle of $\approx \frac{\pi}{4}$ from $\left|\psi^{H}\right\rangle$
- \mathbb{M}_{v} returns 1 with prob. $p^{O}:=\|$ proj. of $\left|\psi^{O}\right\rangle$ along $|v\rangle \|^{2}$

Our Idea: Measurement-Based Extraction

- Summary - our measurement-based extraction idea (assume 1 oracle query, optimal distinguisher \mathcal{A}) -- algorithm C :

1. $\operatorname{Run} \mathcal{A}_{1}^{|G\rangle}\left(z^{*}=\operatorname{Enc}\left(x^{*}\right), y_{H}, y_{G}\right)$ to output oracle query
2. Process the query with the oracle $U_{|G\rangle} / /$ state $\rightarrow\left|\psi^{G}\right\rangle$
3. Let \mathcal{A} perform its proj. meas. w.r.t. $|v\rangle \quad / /$ state $\rightarrow|v\rangle$ with prob. $p_{3} \approx \| \operatorname{proj}_{v}\left(\left|\psi^{G}\right\rangle\right) \|^{2} \approx \frac{1}{2}$
4. Measure the input reg. and ret. result $/ /$ state $\rightarrow\left|x^{*}\right\rangle|\cdot\rangle$ with prob. $p_{4} \approx \| p r o j_{\delta}(|v\rangle) \|^{2} \approx \frac{1}{2}$

Overall extraction success probability := $A d v_{O W}(C)=p_{3} \cdot p_{4} \approx \frac{1}{4}$

Our Idea: Measurement-Based Extraction

- Summary - our measurement-based extraction idea
- (assume 1 oracle query, optimal distinguisher \mathcal{A}) -- algorithm C:

1. Run $\mathcal{A}_{1}^{|G\rangle}\left(z^{*}=\operatorname{Enc}\left(x^{*}\right), y_{H}, y_{G}\right)$ to output oracle query
2. Process the query with the oracle $U_{|G\rangle} / /$ state $\rightarrow\left|\psi^{G}\right\rangle$
3. Let \mathcal{A} perform its proj. meas. wrt $|v\rangle \quad / /$ state $\rightarrow|v\rangle$ with prob. $p_{3} \approx \| \operatorname{proj}_{v}\left(\left|\psi^{G}\right\rangle\right) \|^{2} \approx \frac{1}{2}$
3.1 Run \mathcal{A}_{2}-- pre-meas. unitary $\quad / /$ rotates $|v\rangle$ to comp. basis st. $|1\rangle:=\mathcal{A}_{2}|v\rangle$
3.2 Run \mathcal{A} 's comp. basis out. Meas. $\mathbb{M} / /$ state $\rightarrow|1\rangle$ with prob. $\| \operatorname{proj}_{1}\left(\mathcal{A}_{2}\left|\psi^{G}\right\rangle\right) \|^{2} \approx \frac{1}{2}$.
3.3 Run \mathcal{A}_{2}^{-1}-- Rewind back to query $/ /$ rotates $|1\rangle$ back to $|v\rangle=\mathcal{A}_{2}^{-1}|1\rangle$
4. Measure the input reg. and ret. result $/ /$ state $\rightarrow\left|x^{*}\right\rangle|\cdot\rangle$ with prob. $p_{4} \approx \| \operatorname{proj}_{\delta}(|v\rangle) \|^{2} \approx \frac{1}{2}$

Overall extraction success probability :=Advow $(C)=p_{3} \cdot p_{4} \approx \frac{1}{4}$
\rightarrow "Measure-Rewind-Measure" (MRM) technique

Our Idea: Measurement-Based Extraction

- Comparison with prior OWTH results:

OWTH Lemma	Adv(A) bound	Secret set size $\|\mathrm{S}\|$	Extractor oracles	A's dist. event
Orig. [U14]	$2 d \sqrt{A d v_{O W}}$	Arbitrary	$\|H\rangle$ or $\|G\rangle$	Arbitrary
Semi-Class. [AHU18]	$2 \sqrt{d A d v_{O W}}$	Arbitrary	$(\|H\rangle \backslash$ S or $\|G\rangle \backslash$ S $)$ and 1_{S}	Arbitrary
Orig. Double- Sided [BH+19]	$2 \sqrt{A d v_{O W}}$	1	$\|H\rangle$ and $\|G\rangle$	Arbitrary
MRM	$4 d A d v_{O W}$	Arbitrary	$\|H\rangle$ and $\|G\rangle$	$1 \leftarrow \mathrm{~A}$

d := A's oracle depth, $A d v_{O W}:=$ extractor's success probability,
$\mathrm{S}:=$ set on which G, H differ, $|H\rangle \backslash \mathrm{S}:=$ restriction of $|H\rangle$ to complement(S), $1_{S}:=$ indicator function of S

References

[ACISP'18] Wilson Abel Alberto Torres, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, Veronika Kuchta, Nandita Bhattacharjee, Man Ho Au, Jacob Cheng: " Post-Quantum One-Time Linkable Ring Signature and Application to Ring Confidential Transactions in Blockchain (Lattice RingCT v1.0)"
[ACISP'19] Wilson Abel Alberto Torres, Veronika Kuchta, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, Jacob Cheng: "Lattice RingCT V2.0 with Multiple Input and Multiple Output Wallets."
[CRYPTO'18] B. Libert, S. Ling, K. Nguyen, and H. Wang, "Lattice-Based Zero-Knowledge Arguments for Integer Relations"
[CRYPTO'19] M. F. Esgin, R. Steinfeld, J. K. Liu, and D. Liu, "Lattice-based zero-knowledge proofs:New techniques for shorter and faster constructions and applications"
[PQCrypto’19] Jiang, H., Zhang, Z., Ma, Z. "Tighter security proofs for generic key encapsulation mechanism in the quantum random oracle model".
[EUROCRYPT'20] Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, Shifeng Sun:
"Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs for One-Way to Hiding and CCA Security"

