
GASP: a Generic Approach to Secure network Protocols

Olivier Levillain

May 13th 2020

O. Levillain GASP 1/39

Agenda

Introduction

The Need for Robust Parsers

A Platform for Binary Parser Generators

Animating Protocols

Fuzzing implementations

Next steps

Agenda

Introduction

The Need for Robust Parsers

A Platform for Binary Parser Generators

Animating Protocols

Fuzzing implementations

Next steps

Introduction

Project Outline

GASP, a Generic Approach to Secure Protocols
I Project funded by the ANR 2019 call (ANR Jeune)
I 4 ans (2019-10-01 – 2023-09-30)

Three main research directions
I Network protocol observation in the field
I Protocol description to derive reference implementation
I Tests on existing implementations using a grey- or whitebox approach

Ressourcess
I 1 PhD student (ATR) + 3 interns (incl. SN)
I 20 ke for servers/laptops
I 25 ke for travel/conferences

O. Levillain GASP 4/39

Introduction

Partners
Télécom SudParis
I Olivier Levillain, principal investigator
I Aina Toky Rasoamanana, PhD student

ANSSI (software security lab)
I Arnaud Fontaine
I Aurélien Deharbe

Collegues from Rennes
I Georges Bossert (Sekoia), pylstar developer
I Guillaume Hiet (CentraleSupélec)

Other people involved
I Karthik Bhargavan (Inria Paris, Prosecco)
I Pascal Lafourcade (UCA)
I Graham Steel (Cryptosense)

O. Levillain GASP 5/39

Introduction

Deliverables and tasks (1/2)

WP0 Project management and dissemination
D0.* Yearly progress reports

WP1 Network protocol observation in the field
WP1.1 Specification of a message description language
WP1.2 Development of compilers to derive parsers
WP1.3 Measurement campaigns
D1.1 Intermediate report on the message language and compilers
D1.2 Final report on the message language and compilers
D1.3 Campaigns results (tools, data and analyses)

WP2 Protocol description to derive reference implementations
WP2.1 Specification of a protocol description languages
WP2.2 Development of compilers to derive reference implementations
D2.1 Intermediate report on the languages and compilers
D2.2 Final report on the languages and compilers

WP3 Tests on existing implementations using a grey- or whitebox approach
WP3.1 Test tools derived from the description languages
WP3.2 Program introspection to explore implementation behaviour
D3.1 Intermediate report on test tools
D3.2 Final report on test tools
D3.3 Report on implementation introspection

O. Levillain GASP 6/39

Introduction

Deliverables and tasks (2/2)

Year 1 Year 2 Year 3 Year 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

WP0

D0.1 D0.2 D0.3 D0.4

WP1

D1.1 D1.2 D1.3

WP1.1

WP1.2

WP1.3

WP2

D2.1 D2.2

WP2.1

WP2.2

WP3

D3.1 D3.2 D3.3

WP3.1

WP3.2

Internship (WP1.1 & WP1.2) PhD Thesis (WP2 & WP3)

Internship (WP1.3) Internship (WP3)

Server purchase Workshop on message
description languages

Workshop on automata
description languages

O. Levillain GASP 7/39

Agenda

Introduction

The Need for Robust Parsers

A Platform for Binary Parser Generators

Animating Protocols

Fuzzing implementations

Next steps

The Need for Robust Parsers

Network protocols and file formats

I To understand a specification, you should try and implement it

I Often, the devil in the detail
I how to encode integers in ASN.1, tar files or protobuf
I the direction to fill in bit fields
I fuzzy specifications

I Binary parsers are a basic block for a lot of programs
I They are often a fragile part of the software (look at CVEs for

Wireshark for example)

O. Levillain GASP 9/39

The Need for Robust Parsers

Where it all began : SSL/TLS campaigns

I Analysis of SSL/TLS connections in the wild (ACSAC 2012)
I for each 443/tcp open port, we record the answer to a given stimulus
I 200 GB of raw data per stimulus

I Problems to handle and dissect these data
I TLS is composed of complex structured messages
I data can be corrupted (in many ways)
I 443/tcp can host other protocols (usually HTTP or SSH)
I more subtle errors in messages

O. Levillain GASP 10/39

The Need for Robust Parsers

Home-made SSL/TLS stacks

What should a client expect when they propose the following ciphersuites :
AES128-SHA et ECDH-ECDSA-AES128-SHA ?

A AES128-SHA

(0x002f)

B ECDH-ECDSA-AES128-SHA

(0xc005)

C an alert
D something else (RC4_MD5)

(0x0005)

E an otherwise correct message, where the field is missing

Actually, it is easy to explain

I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00
I why bother to inspect this byte ?

O. Levillain GASP 11/39

The Need for Robust Parsers

Home-made SSL/TLS stacks

What should a client expect when they propose the following ciphersuites :
AES128-SHA et ECDH-ECDSA-AES128-SHA ?
A AES128-SHA

(0x002f)
B ECDH-ECDSA-AES128-SHA

(0xc005)

C an alert
D something else (RC4_MD5)

(0x0005)

E an otherwise correct message, where the field is missing

Actually, it is easy to explain

I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00
I why bother to inspect this byte ?

O. Levillain GASP 11/39

The Need for Robust Parsers

Home-made SSL/TLS stacks

What should a client expect when they propose the following ciphersuites :
AES128-SHA et ECDH-ECDSA-AES128-SHA ?
A AES128-SHA

(0x002f)

B ECDH-ECDSA-AES128-SHA

(0xc005)
C an alert
D something else (RC4_MD5)

(0x0005)

E an otherwise correct message, where the field is missing

Actually, it is easy to explain

I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00
I why bother to inspect this byte ?

O. Levillain GASP 11/39

The Need for Robust Parsers

Home-made SSL/TLS stacks

What should a client expect when they propose the following ciphersuites :
AES128-SHA et ECDH-ECDSA-AES128-SHA ?
A AES128-SHA

(0x002f)

B ECDH-ECDSA-AES128-SHA

(0xc005)

C an alert

D something else (RC4_MD5)

(0x0005)

E an otherwise correct message, where the field is missing

Actually, it is easy to explain

I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00
I why bother to inspect this byte ?

O. Levillain GASP 11/39

The Need for Robust Parsers

Home-made SSL/TLS stacks

What should a client expect when they propose the following ciphersuites :
AES128-SHA et ECDH-ECDSA-AES128-SHA ?
A AES128-SHA

(0x002f)

B ECDH-ECDSA-AES128-SHA

(0xc005)

C an alert
D something else (RC4_MD5)

(0x0005)
E an otherwise correct message, where the field is missing

Actually, it is easy to explain

I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00
I why bother to inspect this byte ?

O. Levillain GASP 11/39

The Need for Robust Parsers

Home-made SSL/TLS stacks

What should a client expect when they propose the following ciphersuites :
AES128-SHA et ECDH-ECDSA-AES128-SHA ?
A AES128-SHA

(0x002f)

B ECDH-ECDSA-AES128-SHA

(0xc005)

C an alert
D something else (RC4_MD5)

(0x0005)
E an otherwise correct message, where the field is missing

Actually, it is easy to explain

I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00
I why bother to inspect this byte ?

O. Levillain GASP 11/39

The Need for Robust Parsers

Home-made SSL/TLS stacks

What should a client expect when they propose the following ciphersuites :
AES128-SHA et ECDH-ECDSA-AES128-SHA ?
A AES128-SHA (0x002f)
B ECDH-ECDSA-AES128-SHA

(0xc005)

C an alert
D something else (RC4_MD5)

(0x0005)
E an otherwise correct message, where the field is missing

Actually, it is easy to explain
I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00

I why bother to inspect this byte ?

O. Levillain GASP 11/39

The Need for Robust Parsers

Home-made SSL/TLS stacks

What should a client expect when they propose the following ciphersuites :
AES128-SHA et ECDH-ECDSA-AES128-SHA ?
A AES128-SHA (0x002f)
B ECDH-ECDSA-AES128-SHA (0xc005)
C an alert
D something else (RC4_MD5) (0x0005)

E an otherwise correct message, where the field is missing

Actually, it is easy to explain
I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00

I why bother to inspect this byte ?

O. Levillain GASP 11/39

The Need for Robust Parsers

Home-made SSL/TLS stacks

What should a client expect when they propose the following ciphersuites :
AES128-SHA et ECDH-ECDSA-AES128-SHA ?
A AES128-SHA (0x002f)
B ECDH-ECDSA-AES128-SHA (0xc005)
C an alert
D something else (RC4_MD5) (0x0005)

E an otherwise correct message, where the field is missing

Actually, it is easy to explain
I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00
I why bother to inspect this byte ?

O. Levillain GASP 11/39

The Need for Robust Parsers

Home-made SSL/TLS stacks

What should a client expect when they propose the following ciphersuites :
AES128-SHA et ECDH-ECDSA-AES128-SHA ?
A AES128-SHA

(0x002f)

B ECDH-ECDSA-AES128-SHA

(0xc005)

C an alert
D something else (RC4_MD5)

(0x0005)

E an otherwise correct message, where the field is missing

Actually, it is easy to explain

I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00
I why bother to inspect this byte ?

O. Levillain GASP 11/39

The Need for Robust Parsers

Parsifal, a brochure

I A tool to write parsers from concise descriptions
I Efficience of the compiled programs
I Robustness of the developed tools
I Development methodology adapted to an incremental approach to

produce flexible parsers

I Parsifal also allows to dump/unparse the objects
I Example : a simple DNS client in 200 lines

O. Levillain GASP 12/39

The Need for Robust Parsers

Parsifal, a brochure

I A tool to write parsers from concise descriptions
I Efficience of the compiled programs
I Robustness of the developed tools
I Development methodology adapted to an incremental approach to

produce flexible parsers

I Parsifal also allows to dump/unparse the objects
I Example : a simple DNS client in 200 lines

O. Levillain GASP 12/39

The Need for Robust Parsers

Parsifal base concept : the PType

The objects to analyse are described using PTypes
I an OCaml type
I a parse function
I a dump function

Differentes sorts of PTypes
I base PTypes (uint, binstring, etc.)
I Parsifal constructions using keywords (enum, struct, etc.)
I hand-written PTypes

O. Levillain GASP 13/39

The Need for Robust Parsers

Exemple : structure d’une image PNG (1/3)

s t r u c t p n g _ f i l e = {
png_magic : magic ("\x89\x50\ x4e \x47\x0d\ x0a \ x1a \ x0a ") ;
png_content : b i n s t r i n g ;

}

O. Levillain GASP 14/39

The Need for Robust Parsers

Exemple : structure d’une image PNG (2/3)

s t r u c t png_chunk = {
chunk_s i ze : u i n t 3 2 ;
chunk_type : s t r i n g (4) ;
data : b i n s t r i n g (chunk_s i ze) ;
c r c : u i n t 3 2 ;

}

s t r u c t p n g _ f i l e = {
png_magic : magic ("\x89\x50\ x4e \x47\x0d\ x0a \ x1a \ x0a ") ;
chunks : l i s t of png_chunk ;

}

O. Levillain GASP 15/39

The Need for Robust Parsers

Exemple : structure d’une image PNG (2/3)

s t r u c t png_chunk = {
chunk_s i ze : u i n t 3 2 ;
chunk_type : s t r i n g (4) ;
data : b i n s t r i n g (chunk_s i ze) ;
c r c : u i n t 3 2 ;

}

s t r u c t p n g _ f i l e = {
png_magic : magic ("\x89\x50\ x4e \x47\x0d\ x0a \ x1a \ x0a ") ;
chunks : l i s t of png_chunk ;

}

O. Levillain GASP 15/39

The Need for Robust Parsers

Exemple : structure d’une image PNG (3/3)

s t r u c t image_header = {
. . .

}

union chunk_content [e n r i c h] (UnparsedChunkContent) =
| "IHDR" −> ImageHeader of image_header
| "IDAT" −> ImageData of b i n s t r i n g
| "IEND" −> ImageEnd
| "PLTE" −> ImagePa l e t t e of l i s t of a r r a y (3) of u i n t 8

s t r u c t png_chunk = {
chunk_s i ze : u i n t 3 2 ;
chunk_type : s t r i n g (4) ;
data : c o n t a i n e r (chunk_s i ze) of chunk_content (chunk_type) ;
c r c : u i n t 3 2 ;

}

O. Levillain GASP 16/39

The Need for Robust Parsers

Exemple : structure d’une image PNG (3/3)

s t r u c t image_header = {
. . .

}

union chunk_content [e n r i c h] (UnparsedChunkContent) =
| "IHDR" −> ImageHeader of image_header
| "IDAT" −> ImageData of b i n s t r i n g
| "IEND" −> ImageEnd
| "PLTE" −> ImagePa l e t t e of l i s t of a r r a y (3) of u i n t 8

s t r u c t png_chunk = {
chunk_s i ze : u i n t 3 2 ;
chunk_type : s t r i n g (4) ;
data : c o n t a i n e r (chunk_s i ze) of chunk_content (chunk_type) ;
c r c : u i n t 3 2 ;

}

O. Levillain GASP 16/39

The Need for Robust Parsers

Interlude : integer representation

How to represent 1034 (0b010000001010, 0x40a) and 10 (0b1010, 0xa) ?

I as an ASN.1 integer (DER) ?

I 0x02 0x04 0x0a (len=2)
I 0x01 0x0a (len=1)

I as the object length in ASN.1 (DER) ?

I 0x82 0x04 0x0a (long format, len=2)
I 0x0a (short format, implicit len=1)

I as a tag in ASN.1 (DER)

I 0b11111 0b10001000 0b00001010 (long format, last 7-bit chunk
signaled by msb)

I 0b01010 (short format, implicit len=1)

I as the file size (or any integer) in TAR ?

I the string "00000002012"

(octal representation)

I the string "00000000012"

O. Levillain GASP 17/39

The Need for Robust Parsers

Interlude : integer representation

How to represent 1034 (0b010000001010, 0x40a) and 10 (0b1010, 0xa) ?
I as an ASN.1 integer (DER) ?

I 0x02 0x04 0x0a (len=2)
I 0x01 0x0a (len=1)

I as the object length in ASN.1 (DER) ?

I 0x82 0x04 0x0a (long format, len=2)
I 0x0a (short format, implicit len=1)

I as a tag in ASN.1 (DER)

I 0b11111 0b10001000 0b00001010 (long format, last 7-bit chunk
signaled by msb)

I 0b01010 (short format, implicit len=1)

I as the file size (or any integer) in TAR ?

I the string "00000002012"

(octal representation)

I the string "00000000012"

O. Levillain GASP 17/39

The Need for Robust Parsers

Interlude : integer representation

How to represent 1034 (0b010000001010, 0x40a) and 10 (0b1010, 0xa) ?
I as an ASN.1 integer (DER) ?

I 0x02 0x04 0x0a (len=2)
I 0x01 0x0a (len=1)

I as the object length in ASN.1 (DER) ?

I 0x82 0x04 0x0a (long format, len=2)
I 0x0a (short format, implicit len=1)

I as a tag in ASN.1 (DER)

I 0b11111 0b10001000 0b00001010 (long format, last 7-bit chunk
signaled by msb)

I 0b01010 (short format, implicit len=1)

I as the file size (or any integer) in TAR ?

I the string "00000002012"

(octal representation)

I the string "00000000012"

O. Levillain GASP 17/39

The Need for Robust Parsers

Interlude : integer representation

How to represent 1034 (0b010000001010, 0x40a) and 10 (0b1010, 0xa) ?
I as an ASN.1 integer (DER) ?

I 0x02 0x04 0x0a (len=2)
I 0x01 0x0a (len=1)

I as the object length in ASN.1 (DER) ?

I 0x82 0x04 0x0a (long format, len=2)
I 0x0a (short format, implicit len=1)

I as a tag in ASN.1 (DER)

I 0b11111 0b10001000 0b00001010 (long format, last 7-bit chunk
signaled by msb)

I 0b01010 (short format, implicit len=1)

I as the file size (or any integer) in TAR ?

I the string "00000002012"

(octal representation)

I the string "00000000012"

O. Levillain GASP 17/39

The Need for Robust Parsers

Interlude : integer representation

How to represent 1034 (0b010000001010, 0x40a) and 10 (0b1010, 0xa) ?
I as an ASN.1 integer (DER) ?

I 0x02 0x04 0x0a (len=2)
I 0x01 0x0a (len=1)

I as the object length in ASN.1 (DER) ?
I 0x82 0x04 0x0a (long format, len=2)
I 0x0a (short format, implicit len=1)

I as a tag in ASN.1 (DER)

I 0b11111 0b10001000 0b00001010 (long format, last 7-bit chunk
signaled by msb)

I 0b01010 (short format, implicit len=1)

I as the file size (or any integer) in TAR ?

I the string "00000002012"

(octal representation)

I the string "00000000012"

O. Levillain GASP 17/39

The Need for Robust Parsers

Interlude : integer representation

How to represent 1034 (0b010000001010, 0x40a) and 10 (0b1010, 0xa) ?
I as an ASN.1 integer (DER) ?

I 0x02 0x04 0x0a (len=2)
I 0x01 0x0a (len=1)

I as the object length in ASN.1 (DER) ?
I 0x82 0x04 0x0a (long format, len=2)
I 0x0a (short format, implicit len=1)

I as a tag in ASN.1 (DER)

I 0b11111 0b10001000 0b00001010 (long format, last 7-bit chunk
signaled by msb)

I 0b01010 (short format, implicit len=1)
I as the file size (or any integer) in TAR ?

I the string "00000002012"

(octal representation)

I the string "00000000012"

O. Levillain GASP 17/39

The Need for Robust Parsers

Interlude : integer representation

How to represent 1034 (0b010000001010, 0x40a) and 10 (0b1010, 0xa) ?
I as an ASN.1 integer (DER) ?

I 0x02 0x04 0x0a (len=2)
I 0x01 0x0a (len=1)

I as the object length in ASN.1 (DER) ?
I 0x82 0x04 0x0a (long format, len=2)
I 0x0a (short format, implicit len=1)

I as a tag in ASN.1 (DER)
I 0b11111 0b10001000 0b00001010 (long format, last 7-bit chunk

signaled by msb)
I 0b01010 (short format, implicit len=1)

I as the file size (or any integer) in TAR ?

I the string "00000002012"

(octal representation)

I the string "00000000012"

O. Levillain GASP 17/39

The Need for Robust Parsers

Interlude : integer representation

How to represent 1034 (0b010000001010, 0x40a) and 10 (0b1010, 0xa) ?
I as an ASN.1 integer (DER) ?

I 0x02 0x04 0x0a (len=2)
I 0x01 0x0a (len=1)

I as the object length in ASN.1 (DER) ?
I 0x82 0x04 0x0a (long format, len=2)
I 0x0a (short format, implicit len=1)

I as a tag in ASN.1 (DER)
I 0b11111 0b10001000 0b00001010 (long format, last 7-bit chunk

signaled by msb)
I 0b01010 (short format, implicit len=1)

I as the file size (or any integer) in TAR ?

I the string "00000002012"

(octal representation)

I the string "00000000012"

O. Levillain GASP 17/39

The Need for Robust Parsers

Interlude : integer representation

How to represent 1034 (0b010000001010, 0x40a) and 10 (0b1010, 0xa) ?
I as an ASN.1 integer (DER) ?

I 0x02 0x04 0x0a (len=2)
I 0x01 0x0a (len=1)

I as the object length in ASN.1 (DER) ?
I 0x82 0x04 0x0a (long format, len=2)
I 0x0a (short format, implicit len=1)

I as a tag in ASN.1 (DER)
I 0b11111 0b10001000 0b00001010 (long format, last 7-bit chunk

signaled by msb)
I 0b01010 (short format, implicit len=1)

I as the file size (or any integer) in TAR ?
I the string "00000002012"

(octal representation)

I the string "00000000012"

O. Levillain GASP 17/39

The Need for Robust Parsers

Interlude : integer representation

How to represent 1034 (0b010000001010, 0x40a) and 10 (0b1010, 0xa) ?
I as an ASN.1 integer (DER) ?

I 0x02 0x04 0x0a (len=2)
I 0x01 0x0a (len=1)

I as the object length in ASN.1 (DER) ?
I 0x82 0x04 0x0a (long format, len=2)
I 0x0a (short format, implicit len=1)

I as a tag in ASN.1 (DER)
I 0b11111 0b10001000 0b00001010 (long format, last 7-bit chunk

signaled by msb)
I 0b01010 (short format, implicit len=1)

I as the file size (or any integer) in TAR ?
I the string "00000002012" (octal representation)
I the string "00000000012"

O. Levillain GASP 17/39

Agenda

Introduction

The Need for Robust Parsers

A Platform for Binary Parser Generators

Animating Protocols

Fuzzing implementations

Next steps

A Platform for Binary Parser Generators

Parsifal Limitations

Parsifal drawbacks
I OCaml adherence...
I and in particular to camlp4
I rather unsound handling of non linear constructions
I lack of a cool interpreter to help discovery

New ideas
I look ar other languages, e.g. Rust (and its Nom library)
I enrich the DSL (domain-specific language) to reason on PTypes
I better handle constraints on fields
I better isolate parsing from semantic interpretation

O. Levillain GASP 19/39

A Platform for Binary Parser Generators

Other Tools and Languages
A lot of competitors, including
I Hammer (C)
I Scapy (Python)
I Hachoir (Python)
I Parsifal (OCaml)
I Netzob (Python)
I Nail (C)
I Nom (Rust)
I RecordFlux (Ada)
I Everparse (F?)

How to compare these tools ?
I expressiveness
I robustness
I simplicity

O. Levillain GASP 20/39

A Platform for Binary Parser Generators

Other Tools and Languages
A lot of competitors, including
I Hammer (C)
I Scapy (Python)
I Hachoir (Python)
I Parsifal (OCaml)
I Netzob (Python)
I Nail (C)
I Nom (Rust)
I RecordFlux (Ada)
I Everparse (F?)

How to compare these tools ?
I expressiveness
I robustness
I simplicity

O. Levillain GASP 20/39

A Platform for Binary Parser Generators

Our Platform
This is a very young Work-In-Progress, to test tools on specifications,
with regards to several properties.

Tools
I Hammer
I Nail
I Nom
I Parsifal

Specifications
I trivial structures (to document how to handle basic fields)
I DNS
I PNG (and Mini-PNG)

Properties
I sample validation
I parsing speed (not implemented yet)
I robustness (not implemented yet)

O. Levillain GASP 21/39

A Platform for Binary Parser Generators

Our Platform
This is a very young Work-In-Progress, to test tools on specifications,
with regards to several properties.
Tools
I Hammer
I Nail
I Nom
I Parsifal

Specifications
I trivial structures (to document how to handle basic fields)
I DNS
I PNG (and Mini-PNG)

Properties
I sample validation
I parsing speed (not implemented yet)
I robustness (not implemented yet)

O. Levillain GASP 21/39

A Platform for Binary Parser Generators

Our Platform
This is a very young Work-In-Progress, to test tools on specifications,
with regards to several properties.
Tools
I Hammer
I Nail
I Nom
I Parsifal

Specifications
I trivial structures (to document how to handle basic fields)
I DNS
I PNG (and Mini-PNG)

Properties
I sample validation
I parsing speed (not implemented yet)
I robustness (not implemented yet)

O. Levillain GASP 21/39

A Platform for Binary Parser Generators

Our Platform
This is a very young Work-In-Progress, to test tools on specifications,
with regards to several properties.
Tools
I Hammer
I Nail
I Nom
I Parsifal

Specifications
I trivial structures (to document how to handle basic fields)
I DNS
I PNG (and Mini-PNG)

Properties
I sample validation
I parsing speed (not implemented yet)
I robustness (not implemented yet)

O. Levillain GASP 21/39

A Platform for Binary Parser Generators

DNS on the Platform (1/2)

Various samples :
I valid requests and answers...
I including modern features

I truncated messages
I corrupted messages with invalid pointers

Tool Lines Features
Hammer 254 Limited fields
Nail 141 Compression, Zone description
Nom 88 Basic message structure

Parsifal 234 Various message types, Compression

O. Levillain GASP 22/39

A Platform for Binary Parser Generators

DNS on the Platform (1/2)

Various samples :
I valid requests and answers...
I including modern features

I truncated messages
I corrupted messages with invalid pointers

Tool Lines Features
Hammer 254 Limited fields
Nail 141 Compression, Zone description
Nom 88 Basic message structure

Parsifal 234 Various message types, Compression

O. Levillain GASP 22/39

A Platform for Binary Parser Generators

DNS on the Platform (2/2)

Lessons learned from the behaviours of the different tools
I original and current specifications are in conflict (reserved field)
I DNS Extensions are not recognized by some implementations
I some field values are hardcoded in the proposed specs
I DNS compression is not always implemented, and usually requires

specific hand-written code

Sebastien Naud, intern at TSP, is currently working on DNS and Nail.
I Short presentation at R3S Seminar next week (May 20th)

O. Levillain GASP 23/39

A Platform for Binary Parser Generators

DNS on the Platform (2/2)

Lessons learned from the behaviours of the different tools
I original and current specifications are in conflict (reserved field)
I DNS Extensions are not recognized by some implementations
I some field values are hardcoded in the proposed specs
I DNS compression is not always implemented, and usually requires

specific hand-written code

Sebastien Naud, intern at TSP, is currently working on DNS and Nail.
I Short presentation at R3S Seminar next week (May 20th)

O. Levillain GASP 23/39

A Platform for Binary Parser Generators

One important goal for GASP
We would like to propose a new DSL (domain-specific language) that would
take the best of everything if possible
I concision
I expressiveness
I language-agnostic

Source : https://xkcd.com/927/

The approach would be to design a language and to implement compilers
towards interesting programming languages or other DSLs

O. Levillain GASP 24/39

https://xkcd.com/927/

A Platform for Binary Parser Generators

A new vision for structs

s t r u c t png_chunk = {
chunk_s i ze : u i n t 3 2 ;
chunk_type : s t r i n g (4) ;
chunk_data : chunk_content ;
chunk_crc : u i n t 3 2 ;

} con s t r a i n t s {
chunk_s i ze = l e n (chunk_data) ;
chunk_crc = crc32 (chunk_type ^ chunk_data) ;
chunk_type = d i s c r i m i n a n t (chunk_data)

}

I We define functional relations useful for parsing and dumping
I To produce a valid png_chunk only requires the data field

I chunk_data = ImageHeader ... implies that...
I chunk_size is computable
I chunk_type is "IHDR"
I chunk_crc is computable

O. Levillain GASP 25/39

A Platform for Binary Parser Generators

A new vision for structs

s t r u c t png_chunk = {
chunk_s i ze : u i n t 3 2 ;
chunk_type : s t r i n g (4) ;
chunk_data : chunk_content ;
chunk_crc : u i n t 3 2 ;

} con s t r a i n t s {
chunk_s i ze = l e n (chunk_data) ;
chunk_crc = crc32 (chunk_type ^ chunk_data) ;
chunk_type = d i s c r i m i n a n t (chunk_data)

}

I We define functional relations useful for parsing and dumping
I To produce a valid png_chunk only requires the data field

I chunk_data = ImageHeader ... implies that...
I chunk_size is computable
I chunk_type is "IHDR"
I chunk_crc is computable

O. Levillain GASP 25/39

Agenda

Introduction

The Need for Robust Parsers

A Platform for Binary Parser Generators

Animating Protocols

Fuzzing implementations

Next steps

Animating Protocols

State machine description

Similarly to message formats, we would like a DSL to capture state
machines and protocol contexts

Currently, very little animation done with Parsifal
I picodig, a trivial DNS client
I simple TLS state machines

I a decryption tool using SSLKEYLOG files
I a proxy routing records depending on the first packets

More work is needed (WP2) before we can abstract out what is needed

O. Levillain GASP 27/39

Animating Protocols

State machine description

Similarly to message formats, we would like a DSL to capture state
machines and protocol contexts

Currently, very little animation done with Parsifal
I picodig, a trivial DNS client
I simple TLS state machines

I a decryption tool using SSLKEYLOG files
I a proxy routing records depending on the first packets

More work is needed (WP2) before we can abstract out what is needed

O. Levillain GASP 27/39

Agenda

Introduction

The Need for Robust Parsers

A Platform for Binary Parser Generators

Animating Protocols

Fuzzing implementations

Next steps

Fuzzing implementations

Principle of L?

L? is an algorithm to infer automata
I original paper : Dana Anglui — Learning Regular Sets from Queries

and Countermeasures, 1987
I initial scope is very limited since it requires to have a way to decide the

equivalence with an ideal implementation
I approximations are possible to infer a state machine in a black box

situation with reasonnable precision

O. Levillain GASP 29/39

Fuzzing implementations

Application to protocol implementations

To interact with the implementation to test (as a black box), we need to
I concretize the messages to send
I abstract the received messages
I the algorithm will drive the request to explore the state machine

In practice, different kinds of received messages
I real message
I error
I time out

O. Levillain GASP 30/39

Fuzzing implementations

Some references about this approach
TLS
I de Ruiters and Poll, – Protocol State Fuzzing of TLS Implementations

(USENIX Security 2015)
I https://www.usenix.org/node/190893

H2
I Georges Bossert – Comparaisons et attaques sur le protocole HTTP2

(SSTIC 2016)
I https://www.sstic.org/2016/presentation/comparaisons_attaques_http2/

SSH
I Fiterau-Brostean et al. – Model Learning and Model Checking of SSH

Implementations (SPIN’17)
I https://www.cs.ru.nl/E.Poll/papers/learning_ssh.pdf

O. Levillain GASP 31/39

https://www.usenix.org/node/190893
https://www.sstic.org/2016/presentation/comparaisons_attaques_http2/
https://www.cs.ru.nl/E.Poll/papers/learning_ssh.pdf

Fuzzing implementations

Example of a discovered flaw (1/2)

Figure 6: Learned state machine model for RSA BSAFE for Java 6.1.1

4.7 Network Security Services

The model for NSS that was learned for version 3.17.4
looks pretty clean, although there is one more state than
one would expect. There is only one path leading to a
successful exchange of application data. In general all
messages received in states where they are not expected
are responded to with a fatal alert (‘Unexpected mes-
sage’). Exceptions to this are the Finished and Heart-
beat messages: these are ignored and the connection
is closed without any alert. Other exceptions are non-
handshake messages sent before the first ClientHello:
then the server goes into a state where the connection
stays open but nothing happens anymore. Although the
TLS specification does not explicitly specify what to
do in this case, one would expect the connection to be
closed, especially since it’s not possible to recover from
this. Because the connection is not actually closed in this
case the analysis takes longer, as we have less advantage
of our modification of the W-method to decide equiva-
lence.

4.8 OpenSSL

Fig. 7 shows the model inferred for OpenSSL 1.01j. In
the first run of the analysis it turned out that Heartbeat-
Request message sent during the handshake phase were
‘saved up’ and only responded to after the handshake
phase was finished. As this results in infinite models we
had to remove the heartbeat messages from the input al-
phabet. This model obtained contains quite a few more
states than expected, but does only contain one path to
successfully exchange application data.

The model shows that it is possible to start by sending
two ClientHello messages, but not more. After the sec-
ond ClientHello message there is no path to a successful
exchange of application data in the model. This is due
to the fact that OpenSSL resets the buffer containing the
handshake messages every time when sending a Client-

Hello, whereas our test harness does this only on initial-
isation of the connection. Therefore, the hash computed
by our test harness at the end of the handshake is not ac-
cepted and the Finished message in state 9 is responded
to with an alert. Which messages are included in the hash
differs per implementation: for JSSE all handshake mes-
sages since the beginning of the connection are included.

Re-using keys In state 8 we see some unexpected be-
haviour. After successfully completing a handshake, it is
possible to send an additional ChangeCipherSpec mes-
sage after which all messages are responded to with a
‘Bad record MAC’ alert. This usually is an indication of
wrong keys being used. Closer inspection revealed that
at this point OpenSSL changes the keys that the client
uses to encrypt and MAC messages to the server keys.
This means that in both directions the same keys are used
from this point.

We observed the following behaviour after the addi-
tional ChangeCipherSpec message. First, OpenSSL ex-
pects a ClientHello message (instead of a Finished mes-
sage as one would expect). This ClientHello is responded
to with the ServerHello, ChangeCipherSpec and Fin-
ished messages. OpenSSL does change the server keys
then, but does not use the new randoms from the Client-
Hello and ServerHello to compute new keys. Instead the
old keys are used and the cipher is thus basically reset
(i.e. the original IVs are set and the MAC counter reset
to 0). After receiving the ClientHello message, the server
does expect the Finished message, which contains the
keyed hash over the messages since the second Client-
Hello and does make use of the new client and server
randoms. After this, application data can be send over
the connection, where the same keys are used in both di-
rections. The issue was reported to the OpenSSL team
and was fixed in version 1.0.1k.

10

Observable state automata of the RSA BSAFE JAVA stack (version 6.1.1)
I 5 states clearly form the expected “happy flow”
I the 2 state is the error state
I Source : de Ruiters and Poll, Usenix Security 2015

O. Levillain GASP 32/39

Fuzzing implementations

Example of a discovered flaw (2/2)

Figure 2: Learned state machine model for GnuTLS 3.3.8

Figure 3: Learned state machine model for GnuTLS 3.3.12. A comparison with the model for GnuTLS 3.3.8 in Fig. 2
shows that the superflous states (8, 9, 10, and 11) are now gone, confirming that the code has been improved.

6

Observable state automata of GNU TLS 3.3.8
I the automata contains 12 states
I states 8 to 10 form a shadow flow, a Heartbeat leading to a reset
I Source : de Ruiters and Poll, Usenix Security 2015

O. Levillain GASP 33/39

Fuzzing implementations

Ideas to improve and extend L?

Performance improvements
I timeout detections by introspection
I freeze/fork/restart to speed up the number of test cases

Alphabet extension
I use more detailed messages
I add corrupted/invalid messages
I take into account the time spent
I application : automatic detection of Bleichenbacher attacks in TLS

implementations

More on this next week (R3S Seminar, May 20th), with a presentation by
Aina Toky Rasoamanana, PhD student

O. Levillain GASP 34/39

Fuzzing implementations

Ideas to improve and extend L?

Performance improvements
I timeout detections by introspection
I freeze/fork/restart to speed up the number of test cases

Alphabet extension
I use more detailed messages
I add corrupted/invalid messages
I take into account the time spent
I application : automatic detection of Bleichenbacher attacks in TLS

implementations

More on this next week (R3S Seminar, May 20th), with a presentation by
Aina Toky Rasoamanana, PhD student

O. Levillain GASP 34/39

Fuzzing implementations

Ideas to improve and extend L?

Performance improvements
I timeout detections by introspection
I freeze/fork/restart to speed up the number of test cases

Alphabet extension
I use more detailed messages
I add corrupted/invalid messages
I take into account the time spent
I application : automatic detection of Bleichenbacher attacks in TLS

implementations

More on this next week (R3S Seminar, May 20th), with a presentation by
Aina Toky Rasoamanana, PhD student

O. Levillain GASP 34/39

Agenda

Introduction

The Need for Robust Parsers

A Platform for Binary Parser Generators

Animating Protocols

Fuzzing implementations

Next steps

Next steps

Next steps (1/3)

Binary Parsers Platform
I stabilize the platform with 5-6 tools and several specs
I invite tool developers to join
I include performance tests

L?

I better understand pylstar
I or implement a new version of L? ?
I improve the performance with a grey-box approach

O. Levillain GASP 36/39

Next steps

Next steps (1/3)

Binary Parsers Platform
I stabilize the platform with 5-6 tools and several specs
I invite tool developers to join
I include performance tests

L?

I better understand pylstar
I or implement a new version of L? ?
I improve the performance with a grey-box approach

O. Levillain GASP 36/39

Next steps

Next steps (2/3)

Use the message parsers to work on several ecosystems (network scans,
implementation tests)
I TLS (as a benchmark)
I QUIC
I SSH
I H2
I ...

O. Levillain GASP 37/39

Next steps

Next steps (3/3)

DSL to describe protocol messages
I Language design
I Compiler implementations

Protocol animation
I implement protocol stacks for different protocols
I abstract out a way to describe these implementations
I derive reference implementations

O. Levillain GASP 38/39

Next steps

Next steps (3/3)

DSL to describe protocol messages
I Language design
I Compiler implementations

Protocol animation
I implement protocol stacks for different protocols
I abstract out a way to describe these implementations
I derive reference implementations

O. Levillain GASP 38/39

Questions ?

Thank you for your attention

Do not hesitate to speak up if you are interested to contribute !

Backup slides

Backup slides

Parsifal : implemented formats

X.509 rather complete description
SSL/TLS most TLS < 1.3 messages

rudimentary TLS 1.0 implementation
Kerberos PKINIT messages
BGP/MRT tool to extract the prefixes announced
DNS tutorial + picodig
NTP several messages
TAR tutorial
PNG tutorial
OpenPGP packet structure
DVI simple dissection

O. Levillain GASP 41/39

	Introduction
	The Need for Robust Parsers
	A Platform for Binary Parser Generators
	Animating Protocols
	Fuzzing implementations
	Next steps
	Questions
	Backup slides

