Challenges to use AI technology for cyber security

December 2018 Keiichi Shima <<u>keiichi@iijlab.net</u>>

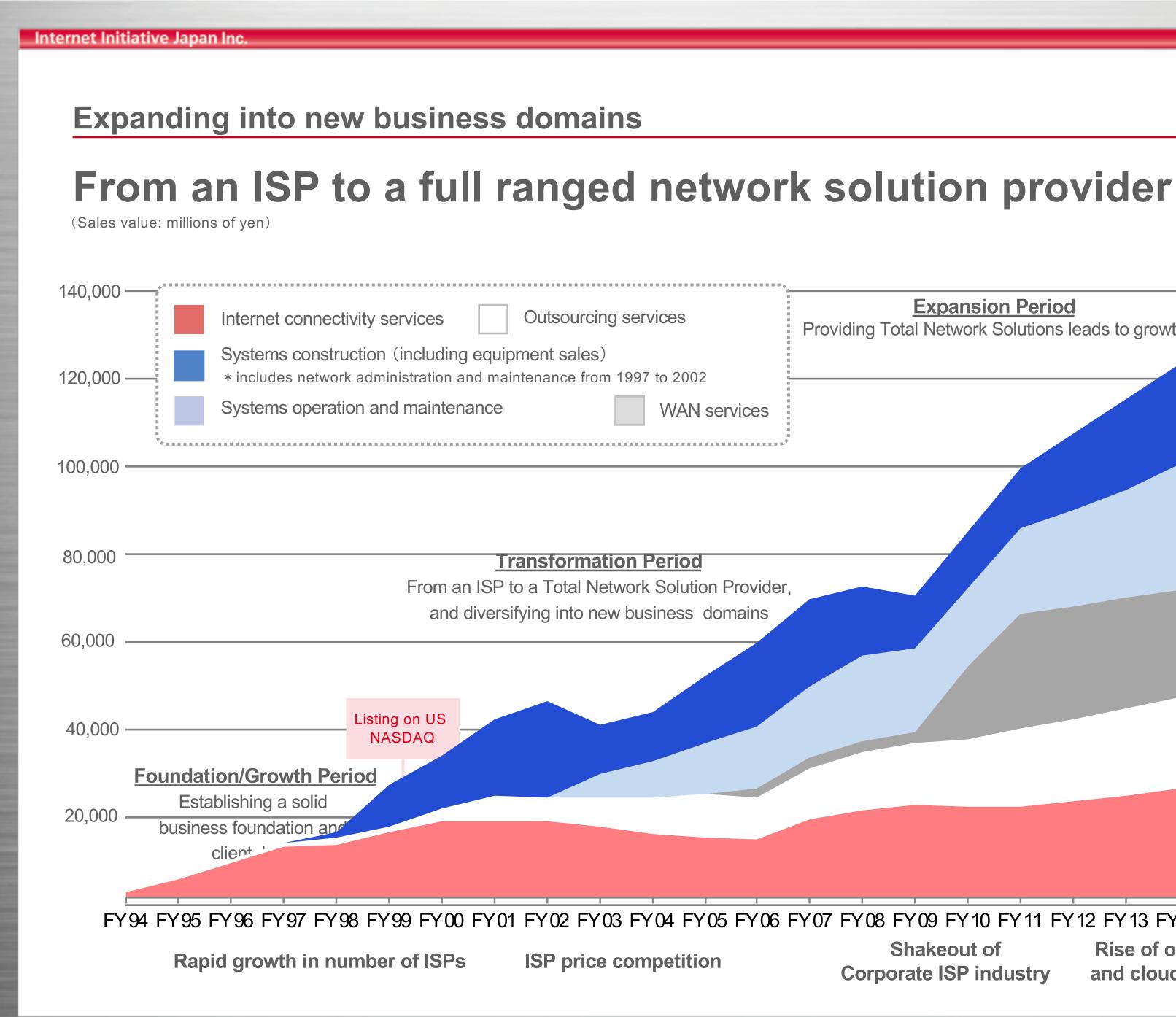
Self Introduction

- Keiichi Shima
 - Deputy Director, IJ Research Laboratory
 - Log analysis

• Work area: Distributed Systems, IP version 6, Mobile IPv6, Network Mobility, Distributed Filesystems, Security

What is IIJ?

- Integration solutions
- Main customers are companies and government


• IIJ is one of the major Internet service providers in Japan

Providing Internet connectivity, Internet services, System

Corporate history

1992	Company founded
1993	Launched Internet con
1994	Registered as Special Typ Launched dial-up IP se
1995	
1996	Began operation of As First Japanese ISP to
1997	
1998	Launched IP multicast Development and sale
1999	Listed on US NASDAC
2000	
2001	Launched world's first
2002	Launched IX service J Launched Japan's larg
2003	Developed SMF, Worl
2004	
2005	Listed on Mother's sec
2006	Listing moved to TSE Patents issued for SM
2007	Established IIJ Innova
2008	Launched MVNO serv
2009	Launched IIJ GIO serv Launched IIJ Secure V
2010	Established IIJ Global
2011	Matsue Data Center P
2012	Established Stratosph
2013	Established IIJ Europe
2014	Acquired RYUKOSHA
2015 2016	Established PT. Biznet Established Leap Solu
	1993 1994 1995 1996 1997 1998 1999 2000 2001 2001 2002 2003 2003 2004 2005 2005 2005 2006 2007 2005 2005 2005 2005 2001

1115	story		
992	Company founded	Development of IIJ management and services	US Internet Society founded Trends in Internet and Telecommunications Industry
993	Launched Internet connectivity		JPNIC founded Japan Internet Society founded (now Internet Association Japan)
994		er with (then) Posts and Telecommunications Ministry apan's first Launched firewall service Japan's first	US Mosaic Communications founded, Yahoo! launched Netscape Navigator1.0 released
995			Windows95 goes on sale in Japan The word "Internet" selected as one of the trendy words of the year
996	Began operation of Asian region First Japanese ISP to launch I	onal Internet backbone(A-Bone) SP business in the USA	Yahoo! Japan service launched NTT, OCN service launched
997			KDD launches domestic telecom service in Japan MPT allows International Public-Private-Public Connection
998	Launched IP multicast distribut Development and sale of SEIL	tion service <mark>Japan's first</mark> Established Netcare,Inc. . advanced router <mark>Japan's first</mark>	CATV Internet connectivity begun
999	Listed on US NASDAQ Nation	al Market Japan's first nt (SLA) Japan's first Launched IPv6 commercial service	i-Mode(NTT DoCoMo)launched, 2-channel launched NTT East and West launch ISDN flat-rate communications service
2000			All companies launch ADSL connectivity services
001	Launched world's first wide-are	ea Ethernet service world's first	Optical fiber service launched (NTT East /West), Yahoo! BB business service launched, FOMA service launched (NTT DoCoMo), METI implements regulations to provent spam email
2002	Launched IX service JPNAP Launched Japan's largest CDN	N platform service	implements regulations to prevent spam email BB Phone commercial service launched (Softbank) Basic Resident Register Network goes into operation
003	Developed SMF, World's first i	network service operating system Japan's first	
004			Tokyo Metropolitan Police Department issues warning about phishing scam P2P telephone Skype 1.0 launched
005	Listed on Mother's section of T	Fokyo Stock Exchange (TSE)	Wireless broadband broadcast Gyao launched by USEN
006		ction Launched anti-spam mail service Japan's first 433) and SFM-LAN (3996922)	Government information leaks via Winny spark concern, Google purchases YouTube in a stock swap, NGN field trials begun (NTT Group)
007	Established IIJ Innovation Inst	itute Inc.	Apple Corporation releases iPhone MIAC establishes New Generation Network Promotion Forum after NGN
800	Launched MVNO service IIJ M	lobile Launched IIJ Direct Access Japan's first	NGN service FLETS HIKARI NEXT launched
009	Launched IIJ GIO service Launched IIJ Secure Web gate	eway service	Cloud computing becomes hot topic
010	Established IIJ Global Solution	ns Inc.	Twitter usage expands
011	Matsue Data Center Park laun	ched	World IPv6 Day established as IPv4 addresses start to run out
012	Established Stratosphere Inc.		
013	Established IIJ Europe Limited	I	With the Internet of Things(IoT)gathering momentum, Google has developed the "Google Glass" wearable device
014	Acquired RYUKOSHA NETWA	ARE Inc.	
015 016		santara with Biznet Networks in Indonesia ia Co., Ltd. with TCCT in Thailand	Mobile carrieres are obliged to remove SIM locks from handsets.
		© Internet Initiative Japan Inc.	

services	Expansion Period Providing Total Network Solutions leads to growth	
1997 to 2002		
WAN services		
· · · · · · · · · · · · · · · · · · ·		
on Period vork Solution Provider business domains		
FY04 FY05 FY06	FY07 FY08 FY09 FY10 FY11 FY12 FY13 FY14 FY15 F	Y 16
competition	Shakeout of Rise of outsourcing Corporate ISP industry and cloud computing	

© Internet Initiative Japan Inc.

IJmío

Service overview

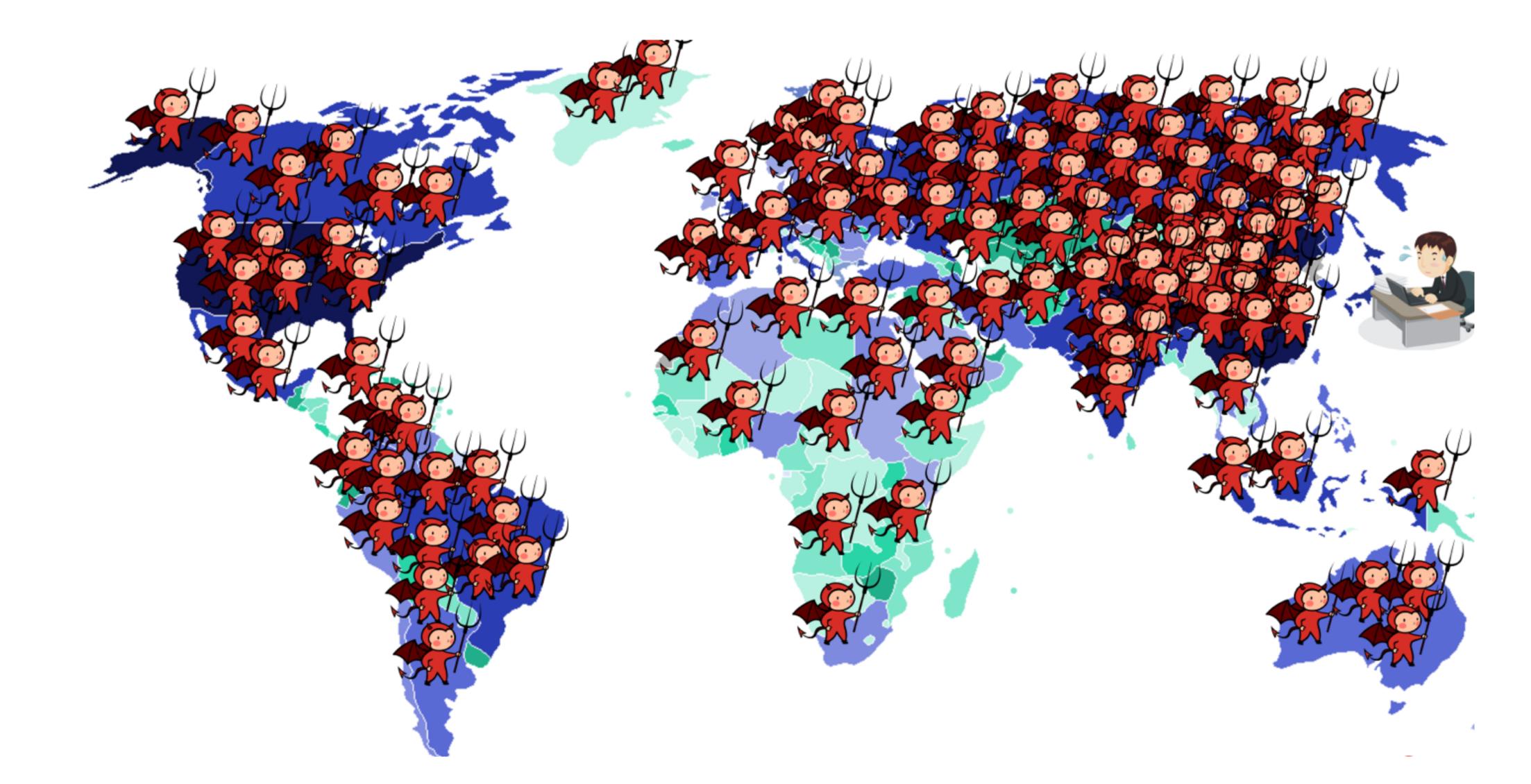
Recharge

APN settings Registration

Where to

<u>日本語 English 中文(简体) 中文(繁體) 한국어 ภาษาไทย</u>

o buy	FAQ	List of tested devices	Support Page	Customer support



Security Concerns

- More and more services depends on IT infrastructure
- (Bad) people found that security attacks make money
- New technologies are invented every day
- Easy to deploy a technology since Internet is designed to be so

Research Background

<u>Many incident reports, everyday</u>

More sophisticated, organized attacks **Constantly invented new attack methods**

Automete incident type, affected range, and counter actions

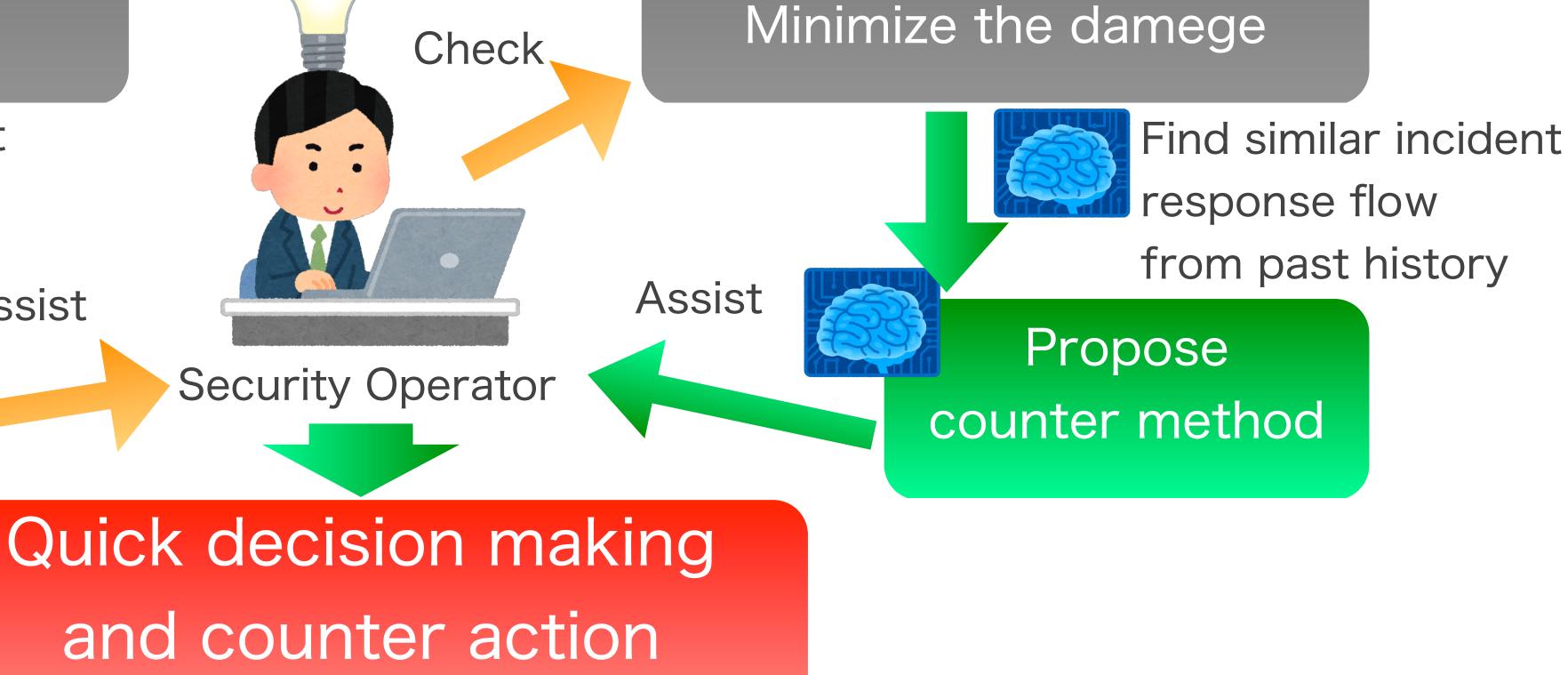
Find "Symptom" of incident and guess type and range Propose counter methods based on the past action history to operators

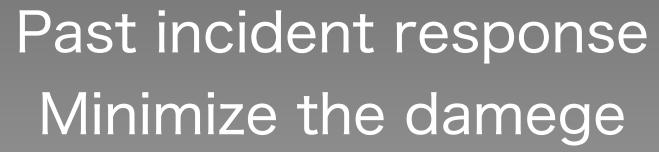
Research Background

<u>Depends on individual</u>

Incident handling depends on skill Quality depends on experience Not scalable operation

How Al will be Used


Anomaly detection alerts Social information



Auto detect

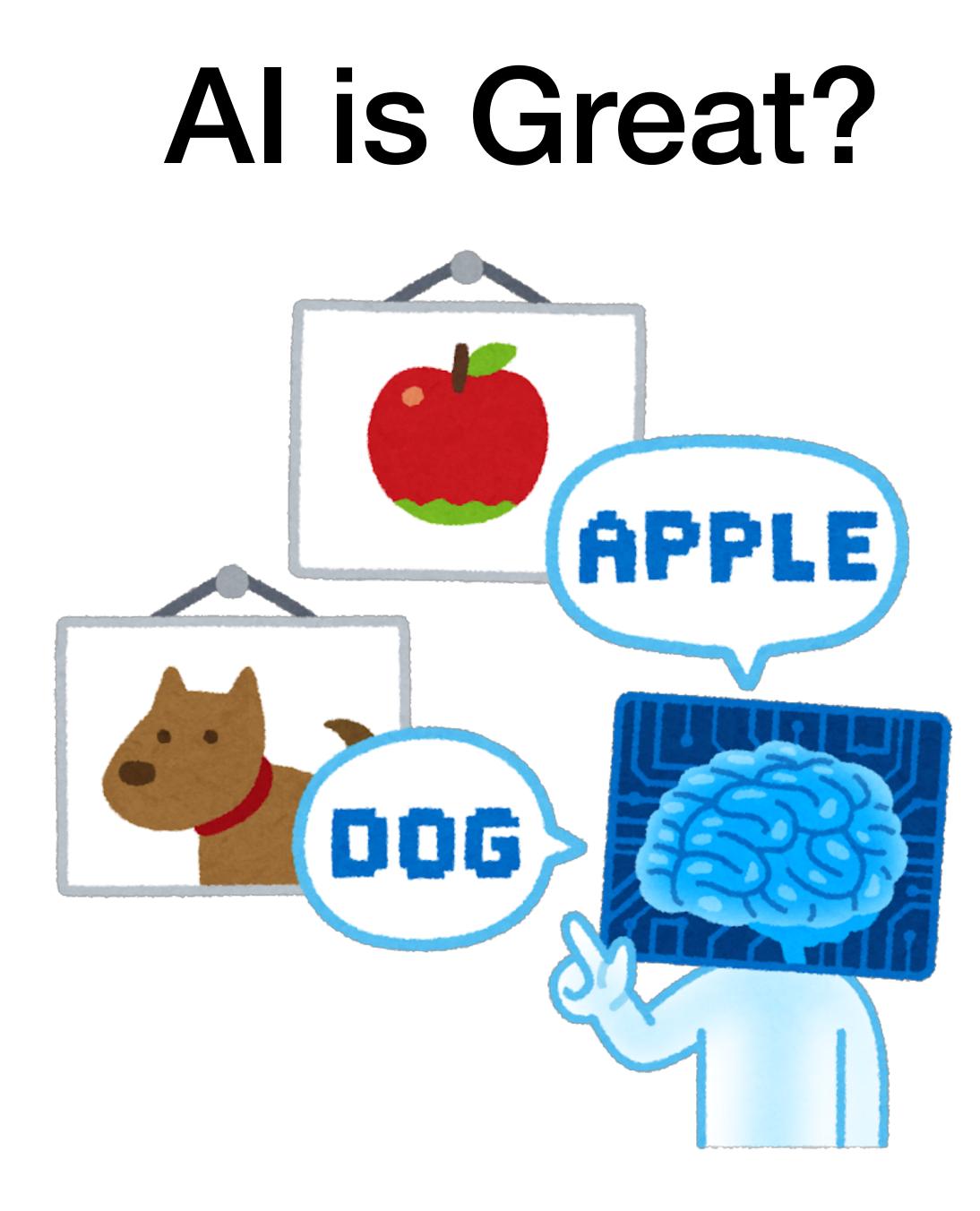
Assist

Guess type of attack and range

Our Objectives

- 1. Detection of symptom of attack or anomaly using big data and machine learning
 - Mitigation for zero-day attacks
 - Combined with existing IDS/IPS
- 2. Prediction and discovery of symptom of attack using social dataset Finding relationship between social actions monitored on Web / SNS and
 - cyber space activities
- Prediction of attack using darknet information 3. Incident response assistance using machine learning • Assisting operator to pickup evidence of attack from large dataset Suggesting first response action learned from past response history

- 4. Providing open dataset


 - Keeping individual privacy that may be included in the dataset • Try to provide wide variety of dataset for security research

This Project is

- Supported by the Japanese Government Funding
- 2.5 year long program started from Oct. 2017

Topics Today

- Al assisted data classification
 - Classify packets into normal or attack
 - Classify IP sources into normal or malicious
 - Classify URL strings into benign or phishing

Why?

Is Al new idea?

- Al is not a new idea (depends on what is Al)
- Machine leaning (SVM: 1961, Random Forest: 2001)
 - Need to carefully define "Features"
 - Require deep knowledge of the target domain to find "effective" features
- Deep learning
 - The concept was published around 2000
 - But was not widely adopted for real use cases

- network was difficult
- network
 - 10% better accuracy than past
- game fields, the application area is keep spreading

Change

• The idea of deep leaning was great but how to train the

• In 2012, Krizhevsky won the prize at ILSVRC (ImageNet Large Scale Visual Recognition Challenge) using neural

• After that, staring from image/voice recognition field, many classification fields, text recognition field, and computer Go

- (Recent) Deep learning may help to solve difficulties to find good features
- Using a lot of existing data
 - Collecting and using huge amount of data becomes possible
 - Train the neural network to react the "features" of the data by giving that amount of data
 - Data processing speed becomes feasible thanks to GPU technology

What is Different?

Can we use DL for Network Data?

- DL achieved remarkable success in image recognition fields
- Ideally, we just want put "Log" data and let DL judge something
- Without deep domain-specific knowledge of the target data

Case 1: Classify Packet Data

Classify Packet Data

• Classify a packet into benign or malicious

Classify Packet Data

- to the neural network to train it
- Can it be possible for network data?

• In image recognition, we give the binary data of an image

Packet Data

- 0×0000: 0×0010: 0x0020: 0x0030: 0×0040: 0x0050: 0x0060: 0×0070: 0×0080: 0x0090: 0x00a0: 0x00b0:

6006 551d 00d5 11ff fe80 0000 0000 0000 14c5 786e cfa3 4b36 ff02 0000 0000 0000 0000 0000 0000 00fb 14e9 14e9 00d5 8e5e 0000 8400 0000 0001 0000 0001 1a4b 6569 6963 6869 2773 204d 6163 426f 6f6b 2050 726f 2032 3031 370f 5f63 6f6d 7061 6e69 6f6e 2d6c 696e 6b04 5f74 6370 056c 6f63 616c 0000 1080 0100 0011 9400 6b16 7270 4241 3d32 373a 3745 3a36 443a 3743 3a36 393a 4332 1172 7041 443d 6461 3663 3639 3965 6635 6635 1172 7048 493d 6130 6361

Packet Data

<mark>6</mark> 006	551d	00d5	11 ff	fe80	0000	0000	0000
14c5	786e	cfa3	4b36	ff02	0000	0000	0000
0000	0000	0000	00fb	14e9	14e9	00d5	8e5e
0000	8400	0000	0001	0000	0001	1a4b	6569
6963	6869	2773	204d	6163	426f	6f6b	2050
726f	2032	3031	370f	5f63	6f6d	7061	6e69
6f6e	2d6c	696e	6b04	5f74	6370	056c	6f63
616c	0000	1080	0100	0011	9400	6b16	7270
4241	3d32	373a	3745	3a36	443a	3743	3a36
393a	4332	1172	7041	443d	6461	3663	3639
3965	6635	6635	1172	7048	493d	6130	6361

0×0000: 0×0010: 0×0020: 0x0030: 0×0040: 0x0050: 0×0060: 0×0070: 0×0080: 0×0090: 0x00a0: 0x00b0:

Think Differently

• Can we treat the packet similar to the image data?

Count Them

0x0000: 6006 551d 00d5 11ff fe80 0000 0000 0000 0×0010: ...

0x60 => 1, 0x00 => 13, 0x06 => 1, 0x65 => 1, ...

256 dimension data

CIC-IDS Dataset

- Publicly available datasets provided by University of New Brunswick
- IDS2017 dataset contains
 - Monday: Normal data only
 - Tuesday: w/ Bruteforce
 - Wednesday: w/ DoS/DDoS
 - Thursday: w/ Web attacks
 - Friday: w/ Botnet ARES

) IDS 2017	Datasets Rest ×	D	aisuke —		×
\leftrightarrow \Rightarrow C	www.unb.ca/cic/datasets/ids-2017.html			🍖 ☆	
	LST. 1785 UNIVERSITY OF NEW BRUNSWICK	Give to UNB Appl	y Q		
	Canadian Institute for Cybersecurity				

Members Datasets

		_
1)	didser	<u>ج</u>
-	atabet	<u> </u>

About

Research

IDS 2012 > IDS 2017 > NSL-KDD > VPN-nonVPN > Botnet >

Android Validation >

Android Botnet >

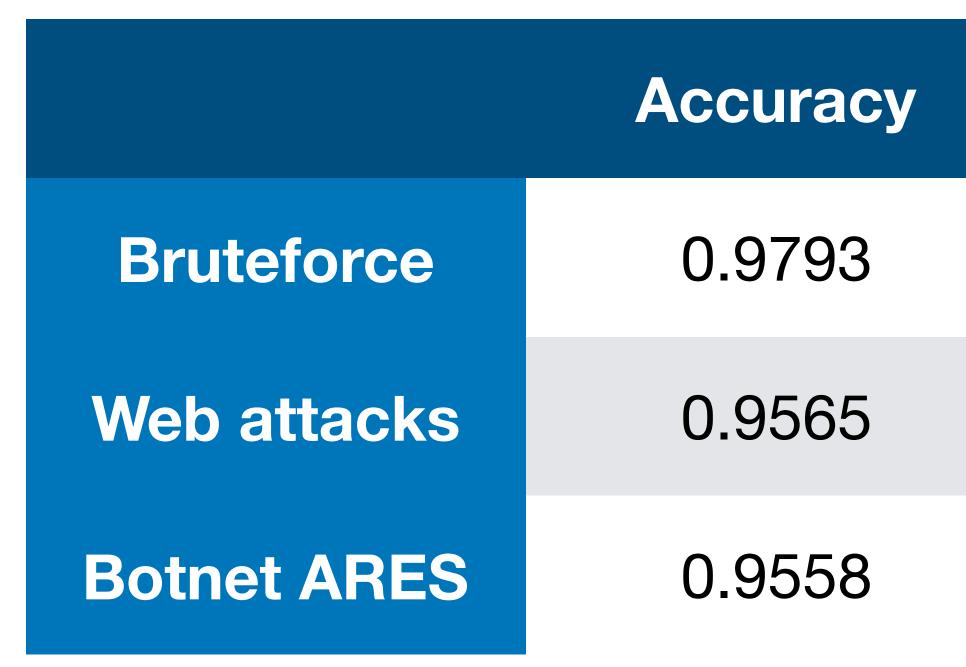
Flowmeter >

Tor-nonTor >

Dos Dataset >

Android-Adware

CICIDS2017 dataset contains benign and the most up-to-date common attacks, which resembles the true real-world data (PCAPs). It also includes the results of the network traffic analysis using CICFlowMeter with labeled flows based on the time stamp, source and destination IPs, source and destination ports, protocols


Intrusion Detection Evaluation Dataset (CICIDS2017)

Intrusion Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs) are the most important defense tools against the sophisticated and ever-growing network attacks. Due to the lack of reliable test and validation datasets, anomaly-based intrusion detection approaches are suffering from consistent and accurate performance evolutions.

Our evaluations of the existing eleven datasets since 1998 show that most are out of date and unreliable to use. Some of these datasets suffer from the lack of traffic diversity and volumes, some do not cover the variety of known attacks, while others anonymize packet payload data, which cannot reflect the current trends. Some are also lacking feature set and metadata

Preliminary Results

FPR	FNR
0.98%	0.19%
0.00%	9.41%
0.01%	3.41%

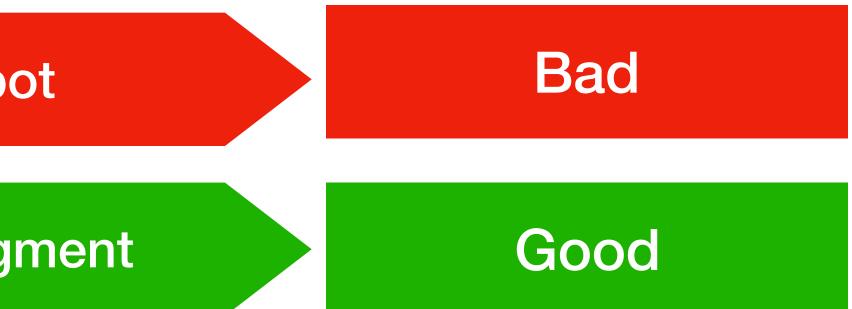
Case 2: Classify TCP Connections

Classify TCP Connections

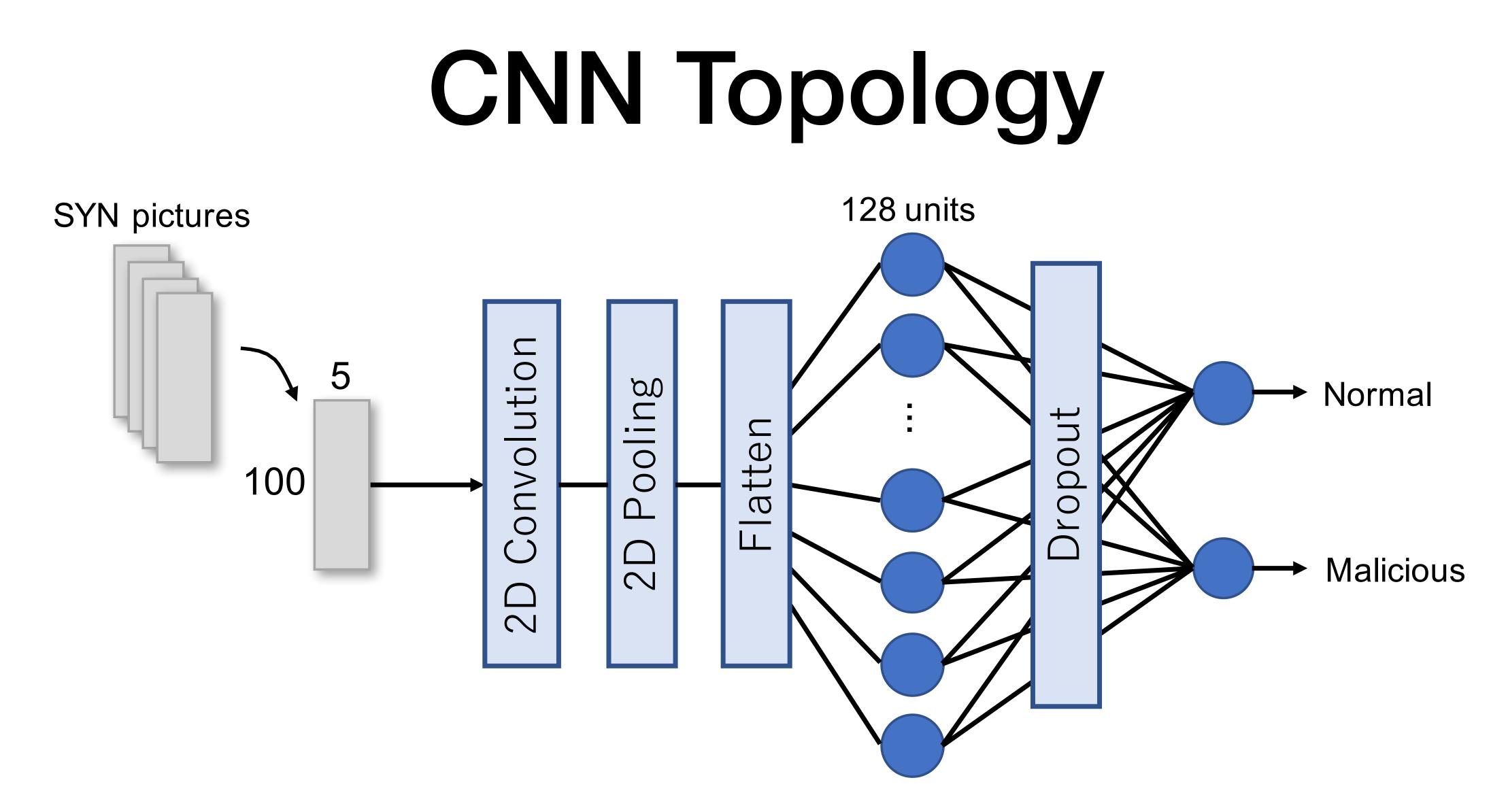
Can we distinguish "good" TCP connections and "bad" TCP

connections based on their connection establishment patterns?

Basic Idea


Make an image of SYNs (Timestamp, Src port, Dst port, Seq #, Window size)

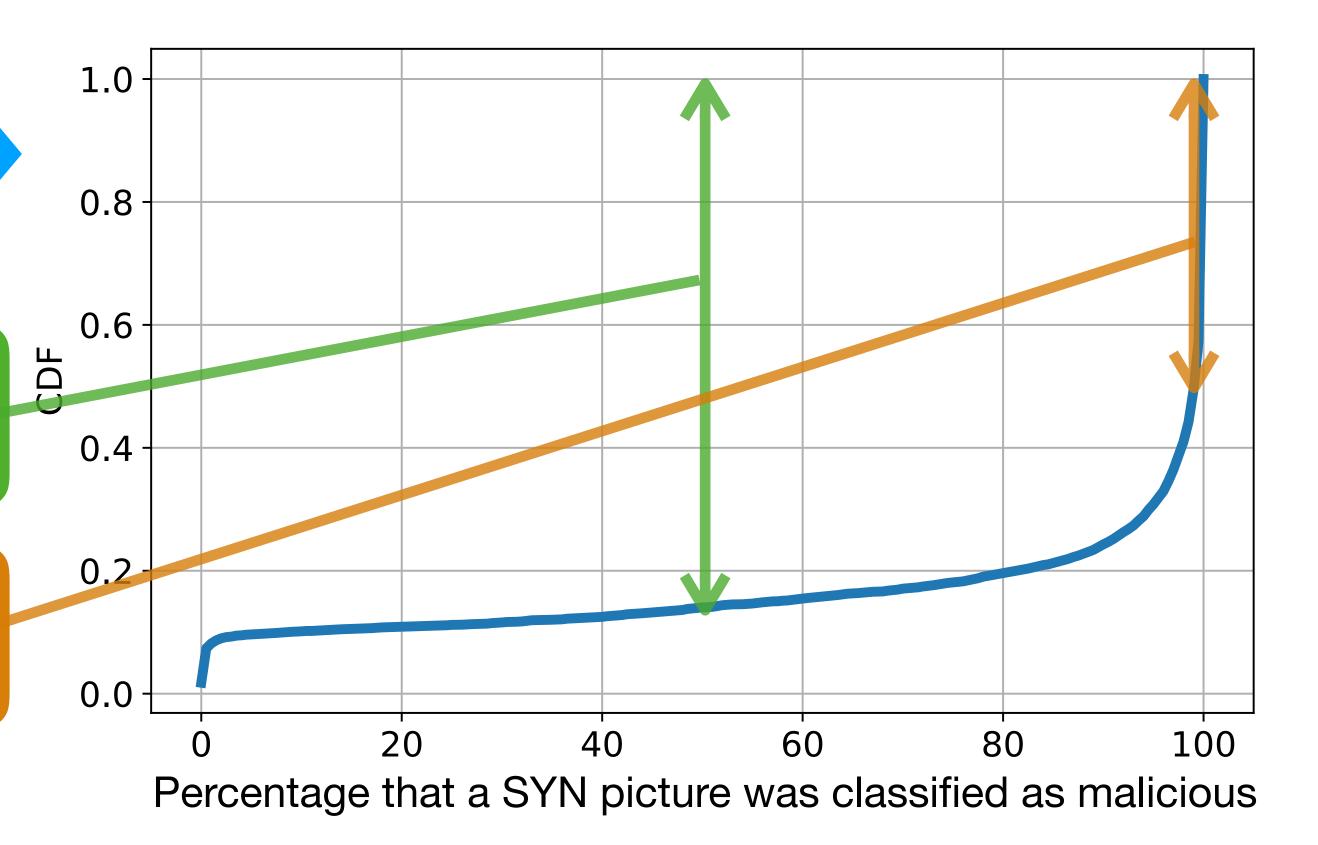
SYNs arrived at Honeypot


SYNs observed in a life segment

Examples of "Bad" SYN packets -

0	20	40	60	80
0	20	40	60	80

Ryo Nakamura, Yuji Sekiya, Daisuke Miyamoto, Kazuya Okada, Tomohiro Ishihara, "Malicious Host Detection by Imaging SYN Packets and A Neural Network", Proceedings of IEEE International Symposium on Networks, Computers and Commnications (ISNCC2018), Rome, Italy, June 2018.


Preliminary Results

Classify packets arrived at the Darknet (Assuming that all of them are malicious)

86% packets are classified as malicious with more than 50% accuracy

50% packets are classified as malicious With more than 99% accuracy

Ryo Nakamura, Yuji Sekiya, Daisuke Miyamoto, Kazuya Okada, Tomohiro Ishihara, "Malicious Host Detection by Imaging SYN Packets and A Neural Network", Proceedings of IEEE International Symposium on Networks, Computers and Commnications (ISNCC2018), Rome, Italy, June 2018.

Case 3: Classify URL strings into benign or phishing

Phishing

- Phishing is one of the major techniques to steal personal information
 - 233,040 attacks were reported in 2Q 2018 (*1)
- There exists several services (products) to defend them
 - URL whitelisting
 - Contents investigation

(*1) Anti Phishing WG report: http://docs.apwg.org/reports/apwg_trends_report_q2_2018.pdf

URL Features?

- Challenges
 - phishing sites?
 - URLs by just looking at the URL strings?
- methods without any specific domain knowledge

• Is there any hidden features in the URL strings used for

Is it possible to distinguish "white" URLs and "black"

• We try to vectorize URLs to use as input information of ML

Traditional Features

- The length of URL
- The number of dots and/or slashes
- Ratio of alphabets, numbers, and marks
- Site rank
- The time from when the domain was registered
- etc...

Think Differently Again

www.iij.ad.jp/index.html Split characters ww.iij.ad.j p / Convert the URL into HEX values 77772E69696A2E61642E6A703F696E6465782E68746D6C Extract 8-bits values by shifting 4 bits in the HEX values 77,77,77,77,77,72,2E, 3F,F6,69,96,6E,E6,64, E6,69,96,69,96,6A,A2, 46,65,57,78,82,2E,E6, 2E, E6, 61, 16, 64, 42, 2E, 68, 87, 74, 46, 6D, D6, 6C E6,6A,A7,70

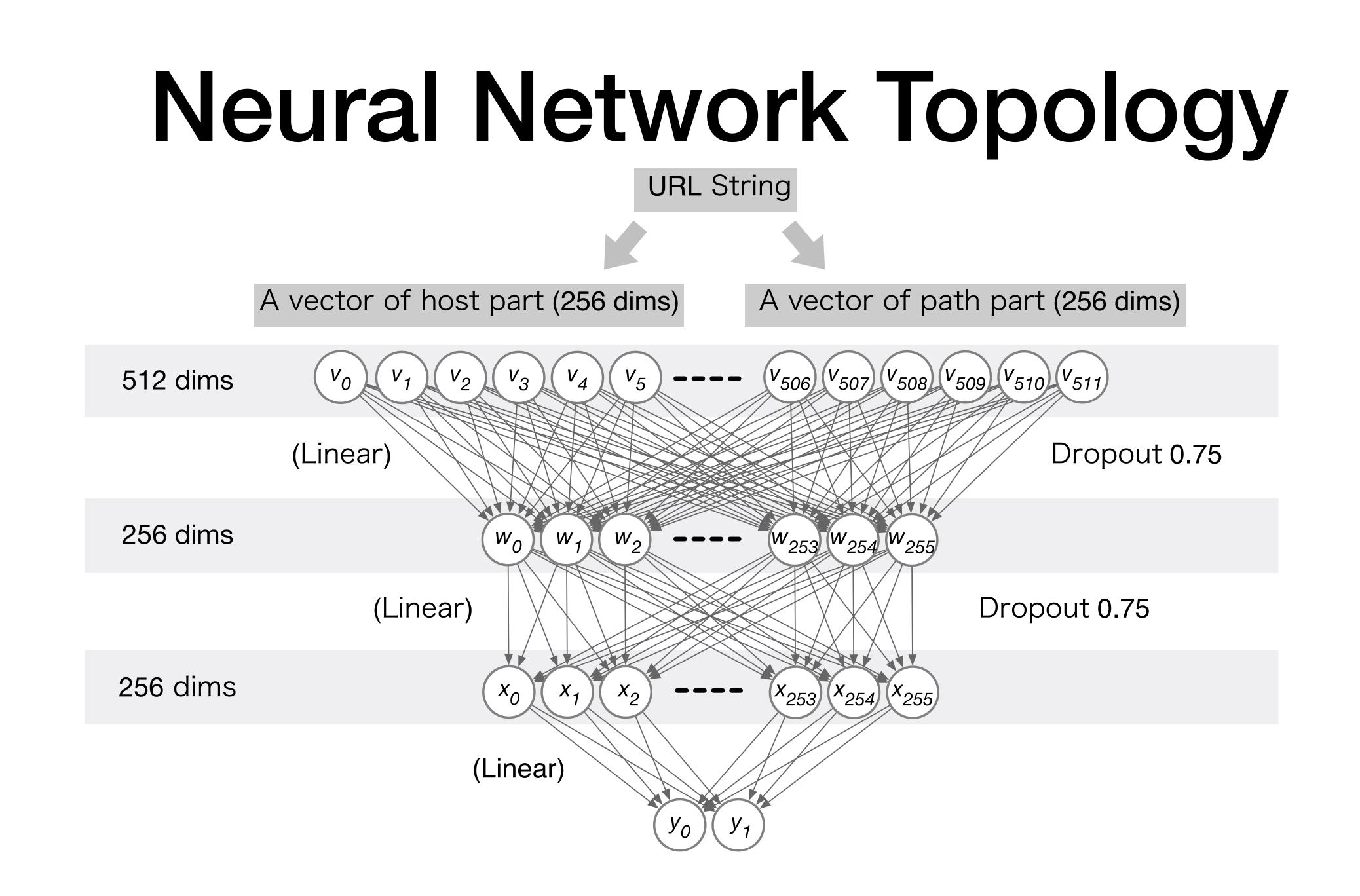
Count the number of unique values for the host part and the URL path part respectively (Bag of features)

How to Vectorize

index.html

How to Vectorize?

- www.iij.ad.jp
 - $16 \rightarrow 1 \quad 2E \rightarrow 3$
 - $42 \rightarrow 1 \quad 61 \rightarrow 1 \quad 57 \rightarrow 1 \quad 65 \rightarrow 1$
 - $64 \rightarrow 1 \quad 69 \rightarrow 2$ $6A \rightarrow 2 \quad 70 \rightarrow 1$
 - $72 \rightarrow 1 \quad 77 \rightarrow 5$ $96 \rightarrow 2 \quad A2 \rightarrow 1 \qquad 87 \rightarrow 1 \quad D6 \rightarrow 1$ $A7 \rightarrow 1 E6 \rightarrow 3$


256 dimensional sparse vector

512 dimensional sparse vector

index.html

- $2E \rightarrow 1 \quad 46 \rightarrow 1$
- $68 \rightarrow 1 \quad 6C \rightarrow 1$
- $6D \rightarrow 1 \quad 74 \rightarrow 1$
- $78 \rightarrow 1 \quad 82 \rightarrow 1$
 - $E6 \rightarrow 1$

256 dimensional sparse vector

Blacklist 1 26,722 URLs (before 2017-04-25)

Blacklist 26,722 URLs

Making Datasets

Graylist 142,749,999 URLs (on 2017-04-25)

Exclude

Blacklist 2 68,172 URLs (before 2017-10-03)

Sample

Whitelist 26,722 URLs

DatasetsTABLE I.URL DATASETS FOR TRAINING

Туре	Content	Count
Blacklist 1	Phishing site URLs reported at PhishTank.com before $2017-04-25$. This list is used as a blacklist for learning and testing in conjunction with the Whitelist 1.	26,722
Blacklist 2	Phishing site URLs reported at PhishTank.com before $2017-10-03$. This list is used to cleanse the target access log captured at the anonymous research organization X.	68,172
Whitelist 1	A sampled list of URL access log captured at the anonymous research organization X on <u>2017-04-25</u> excluding the entries listed in the Blacklist 2. This list is used for learning and testing in conjunction with the Blacklist 1.	26,722

Keiichi Shima, Daisuke Miyamoto, Hiroshi Abe, Tomohiro Ishihara, Kazuya Okada, Yuji Sekiya, Hirohchika Asai, Yusuke Doi, "Classification of URL bitstreams with Bag of Bytes", First International Workshop on Network Intelligence (NI2018), 20-22 February 2018

Results

RESULTS OF ACCURACY AND TRAINING TIME USING TABLE II. WHITELIST 1 AND BLACKLIST 1 IN TABLE I

	Optimizer	Accuracy (%)		Training time (s)
Our method	Adam		94.18	32
_	AdaDelta		93.54	31
_	SGD		88.29	31
eXpose[6]	Adam		90.52	119
_	AdaDelta		91.31	119
_	SGD		77.99	116

which uses similar approach using a more complex deep neural network

(*1) J. Saxe and K. Berlin, "eXpose: A character-level convolutional neural network with embeddings for detecting malicious URLs, file paths and registry keys," CoRR, vol. abs/1702.08568, February 2017.

Our approach could achieve better accuracy compared to the eXpose(*1) work

Discussion

- Difficulties in making datasets
 - How to label network data
 - How to generalize the dataset
- Difficulties in comparison of results

How to compare our idea and past idea without using the same data

Summary

- The breakthrough of deep Learning technology affects many existing fields
- We are trying to utilize the technology for network data
- The goal is to provide better assistant mechanism without any domain specific knowledge of target data
- We propose stupidly simple vectorization mechanisms to handle network data to use for neural network
- So far we are seeing fairly good results (but not sure it is general results or not)

Related Work

- M. Antonakakis et al., "Understanding the mirai botnet," in 26th USENIX Security Symposium (USENIX Security 17). Vancouver, BC: USENIX Association, 2017, pp. 1093–1110. [Online]. Avail- able: https://www.usenix.org/ conference/usenixsecurity17/technical- sessions/presentation/antonakakis
- Y. Ohsita et al., "Detecting distributed denial-of-service attacks by analyzing tcp syn packets statistically," in Global Telecommunications Conference, 2004. GLOBECOM'04. IEEE, vol. 4. IEEE, 2004, pp. 2043–2049.
- D. M. Divakaran et al., "Detection of syn flooding attacks using linear prediction analysis," in 2006 14th IEEE International Conference on Networks, vol. 1, Sept 2006, pp. 1–6.
- S. H. A. Ali et al., "A neural network model for detecting ddos attacks using darknet traffic features," in 2016 International Joint Conference on Neural Networks (IJCNN), July 2016, pp. 2979–2985.
- X.Yuanetal., "Deepdefense:Identifyingddosattackviadeeplearning," in 2017 IEEE International Conference on Smart Computing (SMART- COMP), May 2017, pp. 1–8.
- C. Fachkha and M. Debbabi, "Darknet as a source of cyber intelligence: Survey, taxonomy, and characterization," IEEE Communications Surveys Tutorials, vol. 18, no. 2, pp. 1197–1227, Secondquarter 2016.
- S. Panjwani et al., "An experimental evaluation to determine if port scans are precursors to an attack," in 2005 International Conference on Dependable Systems and Networks (DSN'05), June 2005, pp. 602–611.

Related Work

- ACM, November 2007, pp. 1–8.
- and Data Mining, ser. KDD '09. New York, NY, USA: ACM, June 2009, pp. 1245–1254.
- attacks," in 2010 Proceedings IEEE INFOCOM, ser. INFOCOM, 2010, pp. 1–5.
- lacksquarepp. 625–631.
- malicious URLs, file paths and registry keys," CoRR, vol. abs/1702.08568, February 2017.

• S. Garera, N. Provos, M. Chew, and A. D. Rubin, "A framework for detection and measurement of phishing attacks," in Proceedings of the 2007 ACM Workshop on Recurring Malcode, ser. WORM '07. New York, NY, USA:

• J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, "Beyond blacklists: Learning to detect malicious web sites from suspicious URLs," in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery

• P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta, "PhishNet: Predictive blacklisting to detect phishing"

B. Sun, M. Akiyama, T. Yagi, M. Hatada, and T. Mori, "AutoBLG: Automatic URL blacklist generator using search space expansion and filters," in 2015 IEEE Symposium on Computers and Communication, ser. ISCC, July 2015,

• J. Saxe and K. Berlin, "eXpose: A character-level convolutional neural network with embeddings for detecting

Internship Program

https://www.iij-ii.co.jp/en/career/internship.html