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Colored Noise in Electronic Systems

CMN in GPS recerver |

GPS positioning noise|.

Markov process
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State-Space Model with Colored Measurement Noise

We will view the problem with the CMN as the triplet Markov model

(TMM):

I Ln ] I Fn 0 0 1T Ln—1 ] I ann ]
Un — 0 \I;-n, 0 Un—1 + £ n

i Yn—1 i _ H-n,—l 1 0 1 L Yn—1 i _ 0 i

where =, € R"|is the state vector,
y» € RY| is the observation vector
v, € RY| is the Markov noise

Error vectors, w, ~ N(0,Q,) € RY| and &, ~ N (0, R,,) € RY| are zereo
mean white Gaussian and uncorrelated with known covariances.

All matrices are supposed to be known and time-varying.

Matrix U,, ¢ RM > is selected such that noise v,, becomes
stationary.




Two approaches are known to derive an
estimator for CMN

« Augmented state

» Measurement differencing
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Important Observations:

Known results employ the prediction state model =z, =
Frnrn_1 + wn_1, wy, ~ N(0,Q,), used in feedback con-
trol. Tracking may fit better the real-time model [29] z,, =
Frxn_1 4+ w,, which real-time noise w,, suits FIR filtering
[30] as a causal equivalent (or mnovations sequence) to x,
[31]. Estimates from both models are equal when Q,, = Q),,—1,
but differ otherwise, especially for Markov jumps.

State-space modeling with colored measurement noise can be
provided using the triplet Markov chains (TMC) introduced 1n
[32] [33] and described for KF as (14, mn [34]).

The problem of colored noise can be viewed as robust against
errors 1 noise vectors. The unbiased finite 1mpulse response
(UFIR) filter [35] completely 1gnores noise and may be a better
choice than the KF [36] [37].
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Augmented State Approach

Separate TMM into the augmented state and regular observation

equations
T B [ F, 0 Tr—1 n B, 0 W
Un N i 0 Y n Un—1 0 I 5 n
yn = [H, 11| |40
n i n "
and rewrite as G ﬁnin_l n én e
Yn — f’{ -ni'n -+ i}n ;

where ,,|and U, have the covariances

- . no U
Bty =| G g | et = o

Remark: The KF can be applied straightforwardly, but becomes ill-
conditioned because of £ {7,751} = 0f.
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Measurement Differencing

To avoid colored noise, consider a new observation

Zn — Yn — \II nYn—1 .
— H nLn —~_ Un — \Il n H n—1Ln—1 — \Il nUn—1

take z,—ijand v,—1| from the TMM, and obtain
> New rvation ]
<n — D'?l Ln —|— “U?lﬁ € Obse ato

where Dn = Hrn, — Fn » Un — Fan_’UJn + £n » [, = \Ijn_.Hﬂ,_1Fn_1
E{o,ol} = T1,®,+ R, E{v,wl}l = TI,B
{(Uﬂ Up, } T n-+mn —|_ n {t’?n Wy, — n 'TI-Q'R
T T
(I)“n — B TIQ'H- B 7 F-n

Remark: Because ©v,, correlates w,, , two different KF algorithms can be
derived, but only one unique UFIR algorithm. 8
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Optimal KF Algorithm

1. Define the prior state estimate as x,, = F,, 2,1/ and find the prior
error covariance:

Pn_ — Fn__Pn_1Fg + BnQ'n.-BZ

2. Define the measurement residual as

Sn — Zn — D n «’i\; — D n ann..—l ‘~_ D n B nWn ‘l‘ (En

and find the innovation covariance S, = F{s,s’ )| as

S-n — D-nFnPn—ngDz + DanQntDg
—|‘Fn (I)n, + R-n.. + Dn (I)n + (I)TDE
— D,.P,D! +R,+ H,®,+ ®.D,). .
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3. Write the KF recursive estimate as

In — T; ‘I‘ KnSn

Fn:f?-n,—l + Kn (Z’n, — DnFnt%n—l)

Remark: The optimal bias correction gain /A, can now be found in two
ways:

1. Derive a new Kalman gain for correlated noise sources.

2. De-correlate the noise sources and apply the standard Kalman gain.

10
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KF for Correlated Noise Sources
1. Define the estimation error as €,, = x,, — ', and write
€En = (I T K-n..Dn)FnEn—l —|_ (I T KnD'n.)B-n..uf"n, T Kn,r{_)n

2. Observe that ¢,,—1, w,, and v,,| are mutually uncorrelated and find
the error covariance P, = F{c.¢., Y as

Pn — (I_KnDn)Pn_(I_KnDn)T
+K71(F71(I)n + Bn)K:{ - (I - KnDn)(I)-n.Kg
— K, (1 - K,D,)" (19a)

— (I-K.D,)P, (I —K.D,)"
+Ku[(Hy — Dn)®, + RKL — (I — K,Dy)®, KL
~K,® (I - K,D,)*"

= (I-K,D,)P;(I-K,D,)" +K,(H,®, +R,)K}
—®, K. — K, ®.(I — K,,D,,)"

— (I-K.,D,)P,(I-K,D\)T +K,R, KT
—K,® (I — K,Dy)" — (I - K,H,)®, K}

= P, —(P;D.+o,)K! - K, (P,D! +®,)"
+ K, S, KL (19b)



3. Find the optimal bias correction gain by minimizing the trace of F,/,
which is equal to the MSE, as

otrP,
0K,

— —2(P, D} + ®,)+2K,S, =0

{

K, = (P;D} +®,)s;'

4. Using the optimal gain derived, transform the error covariance to

Pn — Pn_ - Kn(DnPn_ + (I)g)

5. Modify the KF algorithm as shown below with a pseudo code.

12
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Pseudo Code of the KF for Correlated Noise Sources

Algorithm 1: KF for Correlated w,, and v,

Data: Yn, L0, PU: Qn; R,
Result: x,,, P,

1 begin

2 forn=1.2,--- do

3 Zn = Yn — Vouyn—1 ;

4 P, =F,P, 1 F! + B,Q.B} ;
5 Sy = D, P, D} + Ry + H,®, + &, D, ;
6 K = (P, D}, + ®,)S,"

7 T, = Fntn_1;

8 i} T, + Kn(zp — Dpayy) ;

9 P,=(I-K,D,)P, — K, oL -
10 end for

11 end

Remark: By y = 0, the algorithm becomes the standard KF

13
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KF for De-correlated Noise Sources
1. Use the Bar-Shalom’s trick and represent the state equation as

Ln — Fn,ajn—l ‘~_ Bnu)n ‘I‘ An (Zn T Dnajn T (E’n)
— A-na?n—l ‘|‘ Un + Cn .

where An — ([ — AnDrz)Fn ;
Un, — A-n,z-n ;
Cn — (I — AnD-n)Bnu}n — An@n

and noise ¢, ~ N(0,9,) € R"| has the covariance

Q. = FE{[I-A.D,)B,w, —A,5,][..]"}
= E{{[I—-A.D,)B, — A B T w, — A& .31}
= [I—A(Dy+ VY, H, 1F;")]B.Q, B
x[.J5 + A Ro AL
= (I —A.H,)B,Q.BX(I — A H)" + AR, AT . (27)

14
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2. Find matrix A, to make ¢, and un| Uncorrelated by considering
E{Cav,, } = 0]a@s
E{¢aty}y = E{[(I-A.D,)Byw, — \,5y]
< (wn Bl + &)}
= F{[(I — ADy)Brw, — A1y Bhwy, — A&y
x (wy By Ty + &)}
= [(I-A.D,)—A.T,]B.Q,BITT
—A,R, =0
= (I-AH,)®, AR, =0 (28)

that yields

3. By the transformations, obtain
Q,=(I—-A,H,)B.Q.B, (I —A,D,)"

4. Apply the standard KF algorithm



Pseudo Code of the KF for De-Correlated Noise Sources

Algorithm 2: KF for De-correlated w,, and v,

Data: vy,,, o, Py, Q,., R
Result: x,,, P,

1 begin

2 forn=1,2,--- do

3 Zn = Yn — YV ln—1 ;

4 P, =A,P,_ 1AL + O, ;
: S, =D,P D} + R, :
6

7

8

9

K, =P;DLs '

T, = AnTn_1+ Anzn ;

Tp =2, + K,.(2, — D,1;,) ;
P,=U-K,D,)P; :

10 end for

11 end

Remark: By y = 0, the algorithm becomes the standard KF

16
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Remark: KF requires all information about mode, noise, and initial values and has
thus poor robustness. Better robustness provides the UFIR filter.

KF Strategy
Howto Find Q. R, Poor robustness
Xo, Py 277
> 2
— ?Qg
?? = - 22
Q,, Ry R o A,

Q O O O O Jz’?- O O O (\5

¢ 1 k=1  k
%o Po %4, P K- 1> Pe—1 Xio Pi

272
UFIR Filter Strategy
| Need Only N, !!! .
High robustness
[
— d
i
Batch lterations OB, i=m..k
I" ----- S~
o—o0 O O0—0 O O O O O O
m m+K—1 k
m j(\n’l+.‘(—1 Xk
. e A
Nopt
27
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Y. S. Shmaliy, S. Zhao, C. K. Ahn, Unbiased FIR filtering: an iterative alternative to Kalman filtering ignoring noise and initial conditions, IEEE Control Systems Mag., 37, 5, 70-89, 2017.
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Unique UFIR Filtering Algorithm

Unlike the KF, the UFIR filter can be applied universally on [m,n] for
correlated and de-corelated noise sources

Algorithm 3: UFIR Filter for CMN

Data: N, v, Kn.,s — [y-m, e Ys ]T
Result: =,
! begin ) D-m, (FS---F'r?i,—i—l)_l
2 for k=N —-1,N.--- do
3 m=k—N+1,s=k— N+ K : C - :
4 Gs — (Cg;,scm,s)_l ; m,s — D -F—l
5 To=GCryVim s s—1%s
6 for | =5s+1:ndo i Dy
7 2=y — WViyi—1
) G = [D?Ql + (FiG B ) Remark: No information about
’ Ki=GiDy s noise and initial values is
10 r, = Fax—; .
" #= 3+ Ki(z - Dz required.
12 end for
13 Tn =Ty, &
14 end for

15 end

Y. S. Shmaliy, Linear optimal FIR estimation of discrete time-invariant state-space models, IEEE Trans. Signal Process., 58, 6, 3086-3096, 2010.
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Numerical Example of Tracking

Consider the two-state and three state tracking problems with

ow = 50m/s? 0 =4m zo=[11]"|Py = 0
Nopt = \/ =25 22 20
- 2 - - 2 -
I = = 5
Three-state: F=|0 1 + |,B=| r |,H=[1 0 0]
0 0 1 1]
Q =02 = 1m/s” R:U§:2021na:oé[lll]T
Py = 0

19



2-States: Performance under the ideal conditions of p = q =1
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2-States: Performance under the real-world conditions of p # ¢ # 1
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3-States: Performance under the ideal conditions of p
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3-States: Performance under the real-world conditions of p # ¢ # 1
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Visual Target Tracking

Consider the Car4 benchmark of the visual target tracking

T

P .. -
s - -
- R, ¥ AL =r I
TR T2 e |
- o4
Bk B
A o

N s

Measurement noise in tracking is colored. But not much information is
available. Then set 7 = 0.05s that corresponds to 20 frames/sec,

0w =3m/s*, 0¢ =2m,andfind N =65 .
24



Filtering with the standard KF and UFIR filter
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Filtering with the KF and UFIR filter modified for CMN
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Resume

1. Kalman filter:

1. For CMN, the modified KF algorithm is general.

2. All three KF algorithms modified for augmented vectors, corelated
noise, and de-corelated noise produced identical estimates and
are thus equivalent.

3. No ‘“illness” was observed for the augmented vectors.

4. The proof of identities of the KF algorithms for correlated and de-
correlated noise sources is still challenging.

1. UFIR filter:

1. For CMN, the modified UFIR algorithm has appeared to be ill-
conditioned by the augmented matrices and unique for correlated
and de-correlated noise sources.

2. The UFIR filter has demonstrated better performance (higher

robustness) than the KF algorithms both in simulations and
experimentally.

27



Some Other Applications
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Temperature State Tracking
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Saverio De Vito (saverio.devito@enea.it), ENEA - National Agency for New Technologies, Energy and Sustainable Economic Development.
Y. S. Shmaliy, F. Lehmann, S. Zhao, C. K. Ahn, Comparing robustness of the Kalman, Hinf, and UFIR filters, IEEE Trans. Signal Process., 66, 13, 3447-3458, 2018
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Pose Estimation of Mobile Robots
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D. Heb, C. Rohrig, Pose estimation of mobile robots with quantized measurements using EFIR filtering: Experimental comparison with the EKF,
Proc. 501 Int. Symp. on Robotics (ISR 2018), Munich, Germany, June 2018.
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Accuracy Improvement of a Multi-MEMS Inertial
Measurement Unit by Using an Iterative UFIR Filter

.
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Sensor ARW Improvement
© / J5) Single sensor/UFIR
Gx1 0.0044 1.83
Gx2 0.0049 2.04
Gx3 0.0057 2.37
Gx4 0.0055 2.29
UFIR 0.0024

R. Rasoulzadeh, A. M. Shahri, Accuracy Improvement of a Multi-MEMS Inertial Measurement Unit by Using an Iterative UFIR Filter with the EKF,

Note that optimal filtering was not
applied here in view of unknown
noise.

31

Proc. 2017 European Navigation Conf, (ENC), Lausanne, Switzerland, May 9-12, 2017, pp. 279-286.




Trajectory Prediction of Space Robot for Capturing
Non-cooperative Target

_ ——True value
.. | —#—EFIR/DFT algorithm
| —+— EKF algorithm

€
E
w ;itellite ) f'"",,-”-rfjfﬁ"‘ 2
ilgns AN 0.95
K s Axis ¥ () 02 07 Axis X(m)
oo ~ g | Itis stated experimentally that the EFIR filter
—— is more robust than the EKF and can predict
trajectory fast and accurately.
32

D. Han, P. Huang, Trajectory prediction of space robot for capturing non-cooperative target,
Proc. 18 Int. Conf. on Advanced Robotics (ACAR), Hong Kong, China, July 2017, pp. 328-333.
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Conclusions:

m Under the CMN, the modified KF and UFIR
algorithms produce better estimates than the
standard algorithms.

m For CMN, all three modified KF algorithms are
equivalent. The UFIR algorithm is ill-conditioned by
the augmented matrices and has a unique form for
correlated and de-correlated noise sources.

m Modified for CMN, the UFIR algorithm demonstrates
better performance (higher robustness) than the KF.
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