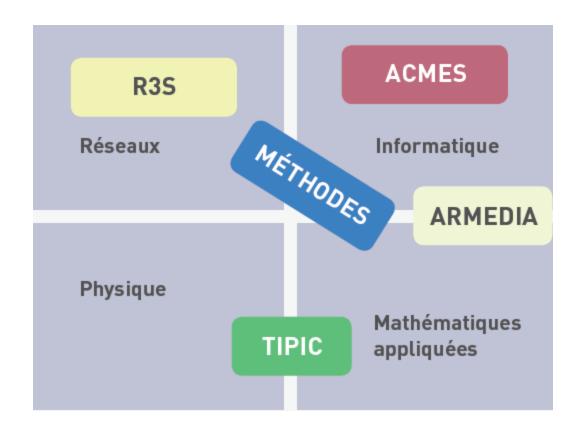


Evaluation de l'Unité SAMOVAR UMR 5157 04 et 05 décembre 2018


Bilan et Projet de l'équipe TIPIC

Traitement de l'Information pour Images et Communications

François Desbouvries

samovar

Équipes et disciplines

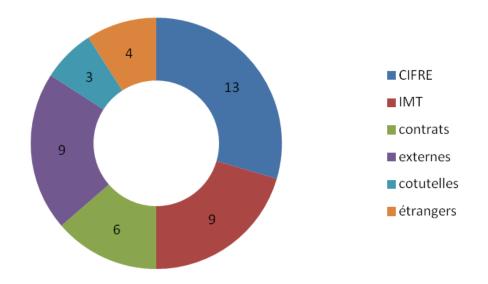
Évolution du périmètre

- 2013 : interface "couche physique » des STIC / mathématiques appliquées.
 - Inférence et restauration bayésienne dans des modèles markoviens ;
 - Traitements statistiques de signaux multi-sources et multi-capteurs ;
 - Algorithmes rapides pour l'électromagnétisme,
 - Apprentissage statistique et reconnaissance des formes.
- Restructuration en 2015
 - "Apprentissage statistique et reconnaissance des formes " TIPIC → ARMEDIA;
 - "technologies avancées pour les communications" : R3S → TIPIC.
- Y. Petetin (2015), D. Clark et T. Taillandier-Loize (2017);
 - S. Le Corff et G. Puentes (2018)

18 enseignants-chercheurs (10P, 8MC) 4 thématiques

Couche physique des systèmes de communication

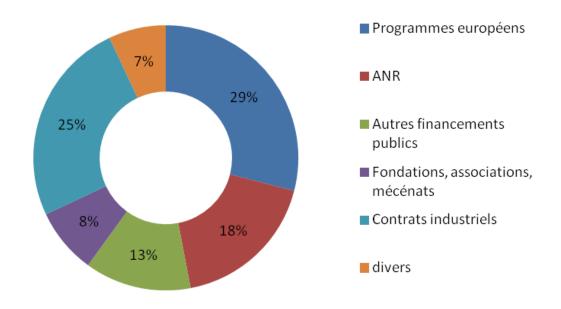
- Estimation dans des modèles markoviens
 - D. Clark, F. Desbouvries (P), R. Douc (P), E. Monfrini, Y. Petetin, W. Pieczynski (P)
- Méthodes d'estimation et de détection pour les traitements multicapteurs
 - M. Castella, J.-P. Delmas (P), F. Lehmann (P)
- Optique et photonique
 - B.-E. Benkelfat (P), Y. Frignac (P), Y. Gottesman, C. Lepers (P), Q. Zou
- Simulations, propagation et navigation
 - C. Letrou (P), N. Samama (P), T. Taillandier-Loize, A. Vervisch-Picois



Thésards

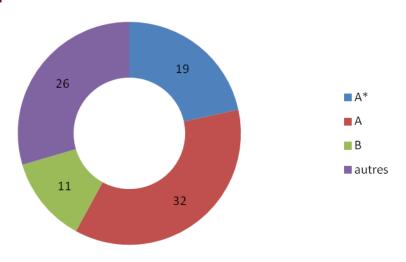
■ 44 doctorants (20 par an), 28 thèses soutenues

■ 5 postdocs, 6 ingénieurs de recherche



Financement de la recherche

2,46 ME (+ 13 bourses CIFRE)



PRODUITS et activités de la recherche

88 articles de revue

Base ERA / CORE:

- 121 articles de conférences
- 1 monographie de recherche, deux chapitres
- 6 brevets

Produits et ACTIVITÉS de la recherche

Édition

Éditeur associé: Annals of Applied Probability (A*), IEEE Tr. Signal Processing (A*),

Signal Processing Elsevier (A)

Numéro spécial: EURASIP Journal on advances in Signal Processing

Technical Program Commitee : ECOC

Évaluation

ANR: Comités d'évaluation scientifique (CES)

Animation scientifique

GDR ISIS: DSA du thème « Méthodes et modèles en traitement du signal et de l'image »

Prix et distinctions

Senior Member de l'OSA et de l'IEEE

Prix du business impact et prix d'excellence d'innovation pour un projet européen

Meilleur article algérien en Computer Science & engineering

Prix DGA de la meilleure thèse.

Enseignements de niveau M2

Telecom SudParis

VAP « Modélisations Statistiques et Applications »

Université Paris 6

Master de Statistiques Master de probabilités et modèles aléatoires

Université Paris-Saclay

Master « Réseaux optiques et Systèmes photoniques »

Master « Mathématiques et applications », parcours « data sciences »

Master de probabilités statistiques

■ École Polytechnique (chargés de cours)

Province, étranger

Master « Imagerie, Robotique et Ingéniérie pour le vivant », Strasbourg Institut de technologie du Cambodge, Phnom Penh, Cambodge John von Neumann Institute, Hô-Chi-Minh-Ville, Vietnam

Analyse SWOT

■ Forces

- Équilibre publications, valorisation / transfert, appui à la communauté, formation par la recherche;
- Implication dans la vie scientifique internationale et nationale
- Positionnement à mi chemin entre théorie et pratique / expérimentation
- Liens enseignements M2 / thématiques de recherche

Opportunités

- Faculté "Data Sciences and Information Technologies" de NewUni
- Déménagement vers le plateau de Saclay (2019)

■ Faiblesses

- Relative diversité des thématiques : frein aux interactions
- Difficultés à renforcer l'équipe avec des chercheurs CNRS

Menaces

 Compétitivité accrue des financements nationaux et européens

Estimation dans des modèles markoviens

Algorithmes de Monte Carlo

- Algorithmes MCMC (analyse)
- Algorithmes SMC (méthodologie, analyse) (poster)

■ Filtrage multi-cibles

Algorithme du second ordre (<u>exposé scientifique</u>)

Modèles graphiques markoviens

- Modèles de Markov partiellement observés (POMM)
- Modèles Couple et Triplet : approches variationnelles, pouvoir modélisant, théorie de l'évidence (poster)

Méthodes d'estimation et de détection pour les traitements multi-capteurs

- Modèles probabilistes mixtes discrets/continus
 - estimation conjointe des canaux de transmission et des données transmises

- Noncircularité, cyclostationnarité
 - Étude de performances

Optimisation

Classe des fonctions rationnelles (poster)

Optique et photonique

Transport de l'information

- Architectures optiques flexibles
- Transmission sur fibre optique (densité spectrale d'information, bande passante optique)

Capteurs photoniques et Imagerie

- authentification biométrique (vidéo)
- détection précoce et non invasive de pathologies

Sources lasers III-V

 propriétés d'émission en présence d'un feed-back optique externe

Simulations, propagation et navigation

Algorithmes rapides pour l'électromagnétisme

• Lancer de Faisceaux Gaussiens à partir de frames de Gabor

Positionnement en milieux contraints

- Positionnement relatif de noeuds communicants (système sans infrastructure ajoutée)
- Mesures de différences de phases (poster)

Navigation des drones

• Techniques de leurrage (poster)

Projet

Bilan

- Estimation dans des modèles markoviens
- Méthodes d'estimation et de détection pour les traitements multi-capteurs
- **■** Optique et Photonique
- Simulations, propagation et navigation

Projet

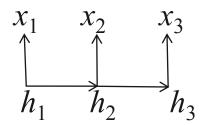
- Statistique et optimisation
- Détection, estimation, communication et surveillance en environnements complexes

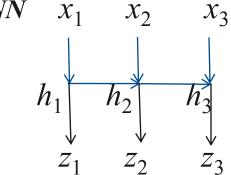
■ Optique et Photonique

Statistique et Optimisation

- Simulation et optimisation en grande dimension
 - Algorithmes MCMC en grande dimension
 - Simulation pour l'optimisation en grande dimension
 - Assimilation de données
 - Inférence sur données massives corrélées
 - Interactions entre objets dans une scène multi-objets dynamique
 - Optimisation non convexe en grande dimension

Modèles probabilistes graphiques et structures neuronales

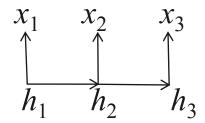




Question: ML vs. statistiques

■ HMM

RNN



Question: ML vs. statistiques

HMM

 $RNN \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_6$

ation, naramètres des noids + biais) d'un

 Optimisation (fonction d'activation, paramètres des poids + biais) d'un DNN en fonction d'un critère statistique

Schoenholz et al., 2017; Hayou Doucet Rousseau 2018

■ Méthodes d'apprentissage pour les statistiques (variationnel → SMC)

ANR ABSINT (C. Robert, NewUni, U. Paris-Saclay, U. Montpellier)

Détection, estimation, communication et surveillance en environnements complexes

- Gestion automatique de capteurs pour la surveillance d'objets multiples dynamiques
- Estimation, détection et décodage conjoints dans les réseaux de type Internet des Objets
- Positionnement dynamique par mesures de phase différentielles temporelles
- Algorithmes rapides pour l'électromagnétisme
- **■** Détection d'interférences radio sur objets mobiles

Optique et photonique

Apprentissage automatique systèmes photoniques

- Liaison point à point; réseau
- Systèmes photoniques neuro-morphiques
- Microscopie sans marqueur pour le diagnostic médical

 Dynamique de lasers à semi-conducteurs en présence de perturbations externes

Question: ML et Photonique

- ML pour réseaux et systèmes optiques
 - Transpondeurs flexibles pour s'adapter aux besoins de communication (supervisé)
 - Détection des anomalies (ex. clustering) (supervisé)
 - Auto-encodage, auto-optimisation des transpondeurs vis-à-vis d'un canal donné
- Systèmes photoniques pour le ML (supervisé)
 - Architectures matérielles (photoniques) permettant de réaliser des calculs de ML de manière plus efficace (énergie / vitesse)
 - Ex : réalisation simplifiée de RNN qui contourne leur complexité d'apprentissage
 - Projection dans un espace de dimension plus grande par la physique
 - Régression linéaire sur la couche de sortie

s@movar

Question: Ptychographie (> vidéo)

- Vers l'application hospitalière
 - → Approche très grand champ, très haute résolution
 - Traitement des données pour détection d'objets d'intérêt
- Positionnement
 - Institut Fresnel: spatial vs. spectral
 - Pitié-Salpêtrière / Genethon Genopole / Tribvn (partenariat stratégique) / CMM / Univ. Reims / Institut Curie (en discussion)
 - GdR ISIS (Journées Imagerie non conventionnelle/Co-conception)
- Plateformes PlenImage (Tomographie & Microscopie)
 Biomica (Microscopie)
 - ACMES, ARMEDIA, TIPIC
- Intégration dans NewUni : Caractérisation polarimétrique (LOB)?

