
Monitoring program execution on ARM 
processors thanks to hardware components

Pascal Cotret, February 28 @ Evry



Hello!
I am Pascal Cotret

- Embedded software security engineer

- Research in my spare-time



HardBlare (2015/2018)

Funded by Labex CominLabs

- 3 labs (INRIA CIDRE, Lab-STICC, SCEE/IETR)

- 2 PhD students.

- 1 postdoc (from February 2018).

=> Heterogeneous information flow control



- DIFT: a short introduction

- Related works in hardware-assisted DIFT

- What can we do with ARM processors?

- Results

- Conclusion & perspectives



Dynamic Information Flow Tracking

Dynamic Information Flow Tracking (DIFT) is a promising technique for detecting 
software attacks.

Motivation: DIFT for security purposes => Integrity and Confidentiality

DIFT principle:

▪ We attach tags to containers and specify an information flow policy, i.e. 
relations between tags.

▪ At runtime, we propagate tags to reflect information flows that occurs.

▪ Allows to detect any security policy violation at run-time.



DIFT



DIFT



DIFT



DIFT



DIFT – Three main steps

▪ Tag initialization: data are tagged with theirs "security level"

password="abcd" Tag(password)=secret

▪ Tag propagation: any new data derived from the tagged data is also tagged

log=err+password Tag(log)=Tag(err)+Tag(password)

▪ Tag check: raise an exception if an information flow doesn’t respect a 
security policy

write(log,network) Policy: (Tag(log)==public)



Different levels for DIFT

▪ Fine-grained (processor level)

vi = addresses and registers; P = instructions

▪ Medium-grained (language level)

vi = variables; P = functions

▪ Coarse-grained (operating system level)

vi = files; P = executables



DIFT



DIFT



DIFT



DIFT



DIFT



Related work

Different levels:

- Application level
- Java / Android, Javascript, C

- OS level
- Laminar, HiStar
- kBlare (1)

- Low level
- Raksha (Kannan et al.)
- Flexitaint (Ventakaramani et al.)
- Flexcore (Deng et al.)
- PAU (Heo et al.)

(1) Jacob Zimmermann, Ludovic Mé, and Christophe Bidan. Introducing Reference Flow Control for 
Detecting Intrusion Symptoms at the OS Level. In : RAID 2002.



Target architecture

SoC = System-on-Chip

- 1+ processor(s)

- Configurable electronic chip
(aka FPGA)



Related work

In-core DIFT Offloading DIFT



Related work

Off-core DIFT

(2) Hari Kannan, Michael Dalton, and Christos ozyrakis. Decoupling dynamic information flow tracking with 
a dedicated coprocessor. In : Dependable Systems & Networks, 2009. IEEE. 2009, pp. 105-114.



Related work

Advantages Disadvantages

Software
Flexible security policies

Multiple attacks detected
Overhead

(from 300% to 3700%)

In-core DIFT Low overhead (<10%)
Invasive modifications
Few security policies

Dedicated CPU for DIFT
Low overhead (<10%)

Few modifications to CPU
Wasting resources

Energy consumption (x2)

Dedicated DIFT 
coprocessor

Flexible security policies
Low overhead (<10%)

CPU not modified

CPU/coprocessor
communication



Related work

ARMHEx approach:

- Reduce overhead of software instrumentation as it represents the major 
portion of overall DIFT execution time overhead

- Lack of security of DIFT coprocessor

- No existing work targets ARM-based SoCs
(related work implementations on softcores)

- Additional challenges
- Limited visibility
- Frequency gap between CPU and DIFT coprocessor
- Communication interface…



Target architecture

SoC = System-on-Chip

- 1+ processor(s)

- Configurable electronic chip
(aka FPGA)



CoreSight components

A set of IP blocks providing HW-assisted 
system tracing



Overall architecture



CoreSight components

A set of IP blocks providing HW-assisted system tracing

Source : ARM CoreSight TRM



CoreSight components

A set of IP blocks providing HW-assisted system tracing

Source : ARM CoreSight TRM



CoreSight PTM

Features:

- Trace filter (all code or regions of code)

- Branch Broadcast

- Context ID comparator

- Cycle accurate tracing

- Timestamping



Example trace

Source code

int i;

for(i=0;i<10;i++)

Trace

Assembly

Decoded trace



Static analysis – Tag dependencies



DIFT stack

Our case:

▪ We want to store tags and initialize tags from the operating system : 
modified kBlare (based on a Linux Kernel 4.9)

▪ We don’t want to loose information (no over-approximation) : 
Dynamic approach: Instrumentation + PTM traces

▪ Extract some informations about the data flow (for tag propagation) :
Static Analysis: Generating annotations.



Overall architecture

- LLVM modification:
- Static Analysis
- Generating annotations
- Code instrumentation
- Modifying the ARM Backend (excl. conditional 

exec, ...)

- kBlare: loading annotations into the co-processor 
dedicated memory.

- Dynamic linker: resolving addresses of 
instrumentation IP address, merging annotations.

- Yocto: Generating the complete distribution and the 
SDK suitable for HardBlare.



Overall architecture



Instrumentation

Recover memory addresses

Two possible strategies:

- Recover all memory addresses through instrumentation

- Recover only register-relative memory address through instrumentation



Instrumentation strategy 1



Instrumentation strategy 2



CoreSight components – Performance overhead



Instrumentation time overhead



Comparison with existing works – Hardware view



Conclusion

As well as some perspectives 



Conclusion - Perspectives

Take away:

▪ CoreSight PTM allows to obtain runtime information (Program Flow)

▪ Non-intrusive tracing => Negligible performance overhead

Perspectives:

▪ Mid-term: releasing a PoC of the whole system

▪ Combine Low-level and OS-level DIFT

▪ Extend DIFT on multicore CPU

▪ Take use of other debug components for security

▪ What about Intel, ST ?



Thanks!
Any questions?

You can find me at: pascal.cotret@gmail.com

mailto:pascal.cotret@gmail.com

