Andrea Araldo

www.mit.edu/~araldo

19 Avril 2018 Paris Distribution de contenu sur Internet : coût opérationnel, transmission multimédia et communication chiffrée

Massachusetts Institute of Technology Andrea Araldo

about me

Where	What	Торіс	Software
A A A A A A A A A A A A A A A A A A A	MSc and BSc in Computer Engineering		
cmit	Research Engineer	SDN and ICN	CoNET
TELECOM ParisTech	Internship	Internet Measurement	Bufferbloat Dissector
UNIVERSITÉ PARIS-SACLAY UNIVERSITÉ PARIS-SACLAY	PhD + postdoc	Content Distribution in the Internet	ccnSim
lili1	Postdoc	Intelligent Transportation Systems	. DynaMIT . SimMobility

traffic explosion and caching

• Hit ratio: fraction of requests satisfied by the cache

Andrea Araldo Cost-Aware Caching

traffic

growth ____

the challenges

> cost-aware caching

Caching to reduce ISP operational cost

[WB] The Little Data Book on Information and Communication Technology. (2015). The World Bank.

Internet Service Provider (ISP) cost

S: cache space p_o : popularity of object o p_o : price of object o

Classic caching: Store the Sobjects with the highest $p_{\rm o}$

Cost-aware caching: Store the Sobjects with the highest $p_o S_o$

Andrea Araldo Cost-Aware Caching

conflicting goals

Scenario: catalog 10^5 objects, cache space 10^3 objects, Zipf exponent 1, prices: $(\$_1,\$_2,\$_3) = (0,1,10)$

online distributed policy

- In theory we should cache the |S| objects o with highest value $p_o \cdot \$_o$
- But we do not know p_o in advance

Andrea Araldo

Cost-Aware Caching

Our Cost-Aware caching preferentially caches expensive objects

online strategy

A. Araldo, D. Rossi, F. Martignon, "Cost-aware caching: Caching more (costly items) for less (ISPs operational expenditures)" $_{10}^{10}$ IEEE Transactions on Parallel and Distributed Systems (TPDS) 2016 Scenario: catalog 10⁵ objects, cache space 10³ objects, Zipf exponent 1, prices: ($\$_1$, $\$_2$, $\$_3$) = (0,1,10)

> caching and video delivery

Andrea Araldo

video caching

Andrea Araldo Video Representation Selection

a new dimension to the caching problem

- Classic caching
 - One request / one file

- Video
 - Different quality representations

q=3

a new dimension to the caching problem

Object selection

Replica placement

Quality selection

Andrea Araldo Video Representation Selection

different quality representations

L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. ELASTIC:a Client-side Controller for Dynamic Adaptive Streaming¹5ver HTTP(DASH). In IEEE Packet Video Workshop (PV), 2013.

objective

Andrea Araldo Video Representation Selection

MILP

served quality

Andrea Araldo Video Representation Selection

optimum

Scenario: catalog 10⁴, popularity Zipf α =1, cache space sufficient to store 1/100 of the catalog at the lowest quality

online distributed policy

online distributed policy

Andrea Araldo Video Representation Selection

online distributed policy

> caching and encryption

unfeasibility of transparent caching

[Naylor] D. Naylor, A. Finamore et al., "The Cost of the "S" in HTTPS," in ACM CoNEXT, 2014

Andrea Araldo

Content-Oblivious Caching

ISPs vs. Content Providers

limits of Content Delivery Networks (CDNs)

- Content Providers loose the exclusive control on their content
- Limited permeation

Andrea Araldo

Content-Oblivious Caching

> femtocaching can only be implemented by ISPs

GOAL:

Allowing ISPs to cache while ...
Preserving Content Providers interests
Caching must be <u>Content Oblivious</u>

 Content Providers have to pay third party CDNs

Andrea Araldo Content-Oblivious Caching

caching as a service

allocation

GOAL: find Θ^{OPT} which minimizes the overall miss stream L

Miss profiles are unknown => We have to infer them

Andrea Araldo Content-Oblivious Caching

partitioning algorithm

convergence

- Theorem:
 - Hp:
 - Stationary content popularity
 - Expected miss streams are decreasing and convex w.r.t. the cache slots
 - Th:
 - Despite noisy miss measurement, we convergence boundedly close to the optimum

observation period T

Andrea Araldo Content-Oblivious Caching

[Leonardi15] M. Garetto, E. Leonardi and S. Traverso, "Efficient analysis of caching strategies under dynamic content popularity," IEEE INFOCOM, 2015

- overall req rate λ =100req/s. overall catalog 3.5·10⁶, overall cache space K=10⁴, object ON/OFF average state duration 1/9 days

conclusions

- Despite its long history, network caching still offers new research challenges
- We should look beyond the classic hit ratio maximization
- ISP Cost
 - Cache more expensive object for less OPEX
- Video
 - Maximizing user utility = Representation selection problem
- Encryption
 - Allow ISPs to cache encrypted traffic and CPs to keep their sensitive information private
- Internet is not simply a computer network!
 - Technical solutions must be refined to take into account the rule of the economic ecosystem